|
import gradio as gr |
|
import shap |
|
from transformers import pipeline |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
matplotlib.use('Agg') |
|
|
|
|
|
sentiment_classifier = pipeline("text-classification", return_all_scores=True) |
|
|
|
|
|
def classifier(text): |
|
pred = sentiment_classifier(text) |
|
return {p["label"]: p["score"] for p in pred[0]} |
|
|
|
|
|
def interpretation_function(text): |
|
explainer = shap.Explainer(sentiment_classifier) |
|
shap_values = explainer([text]) |
|
|
|
|
|
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) |
|
|
|
scores_desc = sorted(scores, key=lambda t: t[1])[::-1] |
|
|
|
|
|
scores_desc = [t for t in scores_desc if t[0] != ""] |
|
|
|
fig_m = plt.figure() |
|
plt.bar(x=[s[0] for s in scores_desc[:5]], |
|
height=[s[1] for s in scores_desc[:5]]) |
|
plt.title("Top words contributing to positive sentiment") |
|
plt.ylabel("Shap Value") |
|
plt.xlabel("Word") |
|
return {"original": text, "interpretation": scores}, fig_m |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_text = gr.Textbox(label="Input Text") |
|
with gr.Row(): |
|
classify = gr.Button("Classify Sentiment") |
|
interpret = gr.Button("Interpret") |
|
with gr.Column(): |
|
label = gr.Label(label="Predicted Sentiment") |
|
with gr.Column(): |
|
with gr.Tabs(): |
|
with gr.TabItem("Display interpretation with built-in component"): |
|
interpretation = gr.components.Interpretation(input_text) |
|
with gr.TabItem("Display interpretation with plot"): |
|
interpretation_plot = gr.Plot() |
|
|
|
classify.click(classifier, input_text, label) |
|
interpret.click(interpretation_function, input_text, [interpretation, interpretation_plot]) |
|
|
|
demo.launch() |