Spaces:
Running
Running
fschwartzer
commited on
Commit
•
34e67a1
1
Parent(s):
bd30d09
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,14 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
-
import os
|
6 |
-
|
7 |
-
os.system("!GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/meta-llama/Llama-2-7b")
|
8 |
-
|
9 |
-
hf_token = os.getenv("HF_TOKEN")
|
10 |
-
token = os.getenv("HF_TOKEN")
|
11 |
-
|
12 |
-
# Load the tokenizer
|
13 |
-
model_name = "meta-llama/Llama-2-7b"
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
-
|
16 |
-
# Load the model
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
18 |
-
|
19 |
-
# Apply dynamic quantization for CPU
|
20 |
-
model = torch.quantization.quantize_dynamic(
|
21 |
-
model, {torch.nn.Linear}, dtype=torch.qint8
|
22 |
-
)
|
23 |
-
|
24 |
-
# Move model to CPU
|
25 |
-
device = torch.device("cpu")
|
26 |
-
model = model.to(device)
|
27 |
-
|
28 |
-
# Set the padding token to the end-of-sequence token
|
29 |
-
if tokenizer.pad_token is None:
|
30 |
-
tokenizer.pad_token = tokenizer.eos_token
|
31 |
|
32 |
# Load the anomalies data
|
33 |
df = pd.read_csv('anomalies.csv', sep=',', decimal='.')
|
34 |
|
35 |
# Function to generate a response
|
36 |
def response(question):
|
37 |
-
|
38 |
-
|
39 |
-
inputs = tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=256).to(device)
|
40 |
-
|
41 |
-
generated_ids = model.generate(
|
42 |
-
inputs['input_ids'],
|
43 |
-
attention_mask=inputs['attention_mask'],
|
44 |
-
max_length=inputs['input_ids'].shape[1] + 50,
|
45 |
-
temperature=0.7,
|
46 |
-
top_p=0.9,
|
47 |
-
no_repeat_ngram_size=2,
|
48 |
-
num_beams=3,
|
49 |
-
)
|
50 |
-
|
51 |
-
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
52 |
-
final_response = generated_text.split("Resposta:")[-1].split(".")[0] + "."
|
53 |
-
|
54 |
return final_response
|
55 |
|
56 |
# Streamlit interface
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load the anomalies data
|
6 |
df = pd.read_csv('anomalies.csv', sep=',', decimal='.')
|
7 |
|
8 |
# Function to generate a response
|
9 |
def response(question):
|
10 |
+
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
11 |
+
final_rresposta = tqa(table=table, query=question)['cells'][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
return final_response
|
13 |
|
14 |
# Streamlit interface
|