fschwartzer commited on
Commit
b1a6dfa
·
verified ·
1 Parent(s): 57c5821

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -13,12 +13,16 @@ df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
13
  # Fill NaN values and convert all columns to strings
14
  df = df.fillna('').astype(str)
15
 
16
- # Function to generate a response using the TAPAS model
 
 
 
17
  def response(user_question, df):
18
  a = datetime.datetime.now()
19
 
20
  # Initialize the TAPAS model
21
- tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
 
22
 
23
  # Debugging information
24
  print("DataFrame shape:", df.shape)
@@ -26,8 +30,12 @@ def response(user_question, df):
26
  print("User question:", user_question)
27
 
28
  # Query the TAPAS model
29
- answer = tqa(table=df, query=user_question)['answer']
30
-
 
 
 
 
31
  query_result = {
32
  "Resposta": answer
33
  }
 
13
  # Fill NaN values and convert all columns to strings
14
  df = df.fillna('').astype(str)
15
 
16
+ # Ensure that the 'Group' column doesn't have excessive length or unexpected values
17
+ df['Group'] = df['Group'].str.slice(0, 255) # Truncate to 255 characters if needed
18
+
19
+ # Function to generate a response using the TAPEX model
20
  def response(user_question, df):
21
  a = datetime.datetime.now()
22
 
23
  # Initialize the TAPAS model
24
+ tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
25
+ tokenizer_kwargs={"clean_up_tokenization_spaces": False})
26
 
27
  # Debugging information
28
  print("DataFrame shape:", df.shape)
 
30
  print("User question:", user_question)
31
 
32
  # Query the TAPAS model
33
+ try:
34
+ answer = tqa(table=df, query=user_question)['answer']
35
+ except IndexError as e:
36
+ print(f"Error: {e}")
37
+ answer = "Error occurred: " + str(e)
38
+
39
  query_result = {
40
  "Resposta": answer
41
  }