import streamlit as st import pandas as pd import torch from transformers import pipeline import datetime from rapidfuzz import process, fuzz from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS # Load the CSV file df = pd.read_csv("anomalies.csv", quotechar='"') # Filter 'real' higher than 10 Million df= df[df['real'] >= 1000000.] # Convert 'real' column to standard float format and then to strings df['real'] = df['real'].apply(lambda x: f"{x:.2f}") # Fill NaN values and convert all columns to strings df = df.fillna('').astype(str) print(df) # Function to remove stopwords def remove_stopwords(text, stopwords=ENGLISH_STOP_WORDS): return ' '.join([word for word in text.split() if word.lower() not in stopwords]) # Function to filter DataFrame by checking if any of the user question words are in the columns def filter_dataframe(df, user_question, threshold=80): user_question = remove_stopwords(user_question) # Remove stopwords question_words = user_question.split() mask = pd.Series([False] * len(df), index=df.index) for column in df.columns: for word in question_words: # Apply RapidFuzz fuzzy matching on the column matches = process.extract(word, df[column], scorer=fuzz.token_sort_ratio, limit=None) match_indices = [match[2] for match in matches if match[1] >= threshold] mask.loc[match_indices] = True # Ensure the mask is aligned with the DataFrame index filtered_df = df[mask] return filtered_df # Function to generate a response using the TAPAS model def response(user_question, df): a = datetime.datetime.now() # Filter the DataFrame dynamically by user question subset_df = filter_dataframe(df, user_question) # Check if the DataFrame is empty if subset_df.empty: return {"Resposta": "Desculpe, não há dados disponíveis para responder à sua pergunta."} # Initialize the TAPAS model tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", tokenizer_kwargs={"clean_up_tokenization_spaces": False}) # Debugging information print("Filtered DataFrame shape:", subset_df.shape) print("Filtered DataFrame head:\n", subset_df.head()) print("User question:", user_question) # Query the TAPAS model try: answer = tqa(table=subset_df, query=user_question)['answer'] except ValueError as e: print(f"Error: {e}") answer = "Desculpe, ocorreu um erro ao processar sua pergunta." query_result = { "Resposta": answer } b = datetime.datetime.now() print("Time taken:", b - a) return query_result # Streamlit interface st.markdown("""
Chatbot do Tesouro RS
""", unsafe_allow_html=True) # Chat history if 'history' not in st.session_state: st.session_state['history'] = [] # Input box for user question user_question = st.text_input("Escreva sua questão aqui:", "") if user_question: # Add human emoji when user asks a question st.session_state['history'].append(('👤', user_question)) st.markdown(f"**👤 {user_question}**") # Generate the response bot_response = response(user_question, df)["Resposta"] # Add robot emoji when generating response and align to the right st.session_state['history'].append(('🤖', bot_response)) st.markdown(f"
**🤖 {bot_response}**
", unsafe_allow_html=True) # Clear history button if st.button("Limpar"): st.session_state['history'] = [] # Display chat history for sender, message in st.session_state['history']: if sender == '👤': st.markdown(f"**👤 {message}**") elif sender == '🤖': st.markdown(f"
**🤖 {message}**
", unsafe_allow_html=True)