import concurrent.futures as cf import glob import io import os import time from pathlib import Path from tempfile import NamedTemporaryFile from typing import List, Literal import requests import gradio as gr import sentry_sdk from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from loguru import logger from openai import OpenAI from promptic import llm from pydantic import BaseModel, ValidationError from pypdf import PdfReader from tenacity import retry, retry_if_exception_type import pdfplumber import concurrent.futures from pydub import AudioSegment from langchain_openai import ChatOpenAI from langchain.chains.summarize import load_summarize_chain from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders.llmsherpa import LLMSherpaFileLoader from langchain_community.document_loaders import WebBaseLoader sentry_sdk.init(os.getenv("SENTRY_DSN")) app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") class DialogueItem(BaseModel): text: str speaker: Literal["female-1", "male-1", "female-2"] @property def voice(self): return { "female-1": "nova", "male-1": "onyx", "female-2": "shimmer", }[self.speaker] class Dialogue(BaseModel): scratchpad: str dialogue: List[DialogueItem] @retry(retry=retry_if_exception_type(ValidationError)) @llm(model="gpt-4o-mini") def generate_dialogue(text: str) -> Dialogue: """ Your task is to take the input text provided and turn it into an engaging, informative podcast dialogue. The input text may be messy or unstructured, as it could come from a variety of sources like PDFs or web pages. Don't worry about the formatting issues or any irrelevant information; your goal is to extract the key points and interesting facts that could be fully discussed in a podcast. Here is the input text you will be working with: {text} First, carefully read through the input text and identify the main topics, key points, and any interesting facts or anecdotes. Think about how you could present this information in a fun, engaging way that would be suitable for an audio podcast. Brainstorm creative ways to discuss the main topics and key points you identified in the input text. Consider using analogies, storytelling techniques, or hypothetical scenarios to make the content more relatable and engaging for listeners. Keep in mind that your podcast should be accessible to a general audience, so avoid using too much jargon or assuming prior knowledge of the topic. If necessary, think of ways to briefly explain any complex concepts in simple terms. Use your imagination to fill in any gaps in the input text or to come up with thought-provoking questions that could be explored in the podcast. The goal is to create an informative and entertaining dialogue, so feel free to be creative in your approach. Write your brainstorming ideas and a rough outline for the podcast dialogue here. Be sure to note the key insights and takeaways you want to reiterate at the end. Now that you have brainstormed ideas and created a rough outline, it's time to write the actual podcast dialogue. Aim for a natural, conversational flow between the host and any guest speakers. Incorporate the best ideas from your brainstorming session and make sure to explain any complex topics in an easy-to-understand way. Write your engaging, informative podcast dialogue here, based on the key points and creative ideas you came up with during the brainstorming session. Use a conversational tone and include any necessary context or explanations to make the content accessible to a general audience. Use made-up names for the hosts and guests to create a more engaging and immersive experience for listeners. Design your output to be read aloud -- it will be directly converted into audio. Make the dialogue sound like a natural conversation between Taiwanese people. Use colloquial language zh-hant, cultural references, and a friendly tone that reflects how people in Taiwan typically speak to each other. Incorporate local phrases and expressions to make the conversation authentic and relatable. Throughout the dialogue, sprinkle in new insights or interesting ideas that might arise naturally from the conversation. These could be personal anecdotes, hypothetical scenarios, or surprising facts that keep the listeners engaged. Include emotional cues to make the conversation more engaging, such as laughter, excitement, or surprise. Make the dialogue as long and detailed as possible, while still staying on topic and maintaining an engaging flow. Aim to use your full output capacity to create the longest podcast episode you can, while still communicating the key information from the input text in an entertaining way. At the end of the dialogue, have the host and guest speakers naturally summarize the main insights and takeaways from their discussion. This should flow organically from the conversation, reiterating the key points in a casual, conversational manner. Avoid making it sound like an obvious recap - the goal is to reinforce the central ideas one last time before signing off. """ @retry(retry=retry_if_exception_type(ValidationError)) @llm(model="gpt-4o-mini") def generate_dialogue_prompt(custom_prompt: str) -> Dialogue: """{custom_prompt}""" def get_mp3(text: str, voice: str, api_key: str = None) -> bytes: client = OpenAI( api_key=api_key or os.getenv("OPENAI_API_KEY"), ) with client.audio.speech.with_streaming_response.create( model="tts-1", voice=voice, input=text, ) as response: with io.BytesIO() as file: for chunk in response.iter_bytes(): file.write(chunk) return file.getvalue() def summarize_chunk(chunk_text: str) -> str: llm = ChatOpenAI(temperature=0, model_name="gpt-4o") document = Document(page_content=chunk_text) summarize_chain = load_summarize_chain(llm=llm) summary = summarize_chain.invoke([document]) return summary["output_text"] # Function to read and extract text from a DOCX file def get_doc_text(filename: str) -> str: from docx import Document as DocxDocument doc = DocxDocument(filename) full_text = [para.text for para in doc.paragraphs] return '\n'.join(full_text) def get_pdf_text(filename: str) -> str: full_text = [] with pdfplumber.open(filename) as pdf: for page in pdf.pages: text = page.extract_text() if text: full_text.append(text) return '\n'.join(full_text) # Function to split text into smaller chunks def split_text(text: str, chunk_size: int = 1000, chunk_overlap: int = 200) -> List[str]: text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) chunks = text_splitter.split_text(text) return chunks # Function to summarize a large document with text splitting in parallel def summarize_large_document(filename: str, chunk_size: int = 1000, chunk_overlap: int = 200) -> str: if filename.endswith(".docx"): text = get_doc_text(filename) elif filename.endswith(".pdf"): text = get_pdf_text(filename) else: raise ValueError("Unsupported file type") chunks = split_text(text, chunk_size, chunk_overlap) summaries = [] with concurrent.futures.ThreadPoolExecutor() as executor: futures = {executor.submit(summarize_chunk, chunk): chunk for chunk in chunks} for future in concurrent.futures.as_completed(futures): summaries.append(future.result()) # Combine all summaries into one final summary final_summary = "\n".join(summaries) return final_summary def summarize_with_sherpa(url: str) -> str: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } response = requests.head(url, headers=headers) content_type = response.headers.get('content-type') allowed_types = [ 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', # DOCX 'application/vnd.openxmlformats-officedocument.presentationml.presentation', # PPTX 'text/html', # HTML 'text/plain', # TXT 'application/xml', # XML 'application/pdf', # PDF ] print(content_type) if any(allowed in content_type for allowed in allowed_types): if 'application/pdf' in content_type: # 使用 pdfplumber 直接从 PDF 中提取文本 with requests.get(url, headers=headers) as pdf_response: with open("temp.pdf", "wb") as temp_file: temp_file.write(pdf_response.content) full_text = [] with pdfplumber.open("temp.pdf") as pdf: for page in pdf.pages: text = page.extract_text() if text: full_text.append(text) return '\n'.join(full_text) # 返回提取的文本 else: # 对于其他支持的类型,使用 WebBaseLoader loader = WebBaseLoader(url) docs = loader.load() return docs[0].page_content # 返回加载的文档内容 else: raise ValueError("Unsupported content type") # 修改 generate_audio 函數以處理新的輸入 def generate_audio(file=None, url=None, text_input=None, custom_prompt=None, openai_api_key: str = None, parse_only: bool = False) -> bytes: if not os.getenv("OPENAI_API_KEY", openai_api_key): raise gr.Error("OpenAI API key is required") text = "" if file: try: text = summarize_large_document(file) except ValueError as e: raise gr.Error(str(e)) elif url: try: text = summarize_with_sherpa(url) except Exception as e: raise gr.Error(str(e)) elif text_input: text = text_input else: raise gr.Error("Please provide either a file, URL, or text input") print(text) if custom_prompt: formatted_prompt = custom_prompt.replace("{text}", text) llm_output = generate_dialogue_prompt(formatted_prompt) else: llm_output = generate_dialogue(text) transcript = "" if parse_only: for line in llm_output.dialogue: transcript += f"{line.speaker}: {line.text}\n\n" return None, transcript, 0 # 返回 None 作为音频文件,0 作为持续时间 audio = b"" characters = 0 with cf.ThreadPoolExecutor() as executor: futures = [] for line in llm_output.dialogue: transcript_line = f"{line.speaker}: {line.text}" future = executor.submit(get_mp3, line.text, line.voice, openai_api_key) futures.append((future, transcript_line)) characters += len(line.text) for future, transcript_line in futures: audio_chunk = future.result() audio += audio_chunk transcript += transcript_line + "\n\n" logger.info(f"Generated {characters} characters of audio") temporary_directory = "./gradio_cached_examples/tmp/" os.makedirs(temporary_directory, exist_ok=True) # we use a temporary file because Gradio's audio component doesn't work with raw bytes in Safari temporary_file = NamedTemporaryFile( dir=temporary_directory, delete=False, suffix=".mp3", ) temporary_file.write(audio) temporary_file.close() audio_segment = AudioSegment.from_file(temporary_file.name) duration = len(audio_segment) / 1000.0 # duration in seconds # Delete any files in the temp directory that end with .mp3 and are over a day old for file in glob.glob(f"{temporary_directory}*.mp3"): if os.path.isfile(file) and time.time() - os.path.getmtime(file) > 24 * 60 * 60: os.remove(file) return temporary_file.name, transcript, duration demo = gr.Interface( title="Anything to Podcast", description=Path("description.md").read_text(), fn=generate_audio, inputs=[ gr.File(label="PDF"), gr.Textbox(label="URL", placeholder="Enter URL of a PDF, DOCX, or PPTX file"), gr.Textbox(label="Text Input", placeholder="Or paste your text here"), gr.Textbox(label="Custom Prompt (Optional)", lines=10, placeholder="Enter your custom prompt here. Use {text} as a placeholder for the input text."), gr.Textbox(label="OpenAI API Key", visible=not os.getenv("OPENAI_API_KEY")), gr.Checkbox(label="Parse Only (No Audio Generation)", value=False), ], outputs=[ gr.Audio(label="Audio", format="mp3"), gr.Textbox(label="Transcript"), gr.Number(label="Duration (seconds)"), ], allow_flagging=False, clear_btn=None, head="Anything Podcast", cache_examples="lazy", api_name="anything-to-podcast", ) demo = demo.queue( max_size=20, default_concurrency_limit=5, ) app = gr.mount_gradio_app(app, demo, path="/") if __name__ == "__main__": demo.launch(show_api=True)