Spaces:
Configuration error
Restore advanced FaceSpace Studio with enhanced features
Browse files- Restored original InsightFace buffalo_l face detection with OpenCV fallback
- Fixed HF Spaces compatibility with proper dependency versions
- Added face swapping functionality with expression preservation
- Implemented Poisson seamless cloning and alpha blending
- Added model caching and lazy loading for better performance
- GPU/CPU dynamic switching for compatibility
- Thread-safe model loading
- Enhanced UI with tabs for future features
- Prepared placeholders for style transfer and batch processing
Features:
β¨ Face Enhancement with SD v1.5
π Face Swapping (new)
π¨ Style Transfer (coming soon)
π¦ Batch Processing (coming soon)
Optimizations:
- XFormers memory efficiency
- VAE slicing for large images
- Attention slicing for GPU memory
- Fallback to CPU when GPU unavailable
- app.py +598 -117
- requirements.txt +12 -6
@@ -1,188 +1,669 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
FaceSpace Studio -
|
4 |
-
|
|
|
5 |
"""
|
6 |
|
7 |
import gradio as gr
|
8 |
import torch
|
|
|
|
|
9 |
from PIL import Image
|
10 |
-
import logging
|
11 |
-
from diffusers import StableDiffusionImg2ImgPipeline
|
12 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# Global
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
try:
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
29 |
"runwayml/stable-diffusion-v1-5",
|
30 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
31 |
safety_checker=None,
|
32 |
requires_safety_checker=False
|
33 |
)
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
|
|
38 |
pipe.enable_attention_slicing()
|
39 |
-
pipe.
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
logger.info("
|
42 |
-
return
|
43 |
|
44 |
except Exception as e:
|
45 |
-
logger.error(f"Failed to
|
46 |
-
return
|
47 |
-
|
48 |
-
def
|
49 |
-
image
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
try:
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# Resize for optimal processing
|
69 |
-
width, height = image.size
|
70 |
-
if width > 768 or height > 768:
|
71 |
-
# Calculate new size maintaining aspect ratio
|
72 |
-
ratio = min(768/width, 768/height)
|
73 |
-
new_width = int(width * ratio)
|
74 |
-
new_height = int(height * ratio)
|
75 |
-
# Make dimensions divisible by 8
|
76 |
-
new_width = (new_width // 8) * 8
|
77 |
-
new_height = (new_height // 8) * 8
|
78 |
-
image = image.resize((new_width, new_height), Image.LANCZOS)
|
79 |
-
|
80 |
-
# Process with SD
|
81 |
with torch.inference_mode():
|
82 |
result = pipe(
|
83 |
prompt=prompt,
|
84 |
-
image=
|
85 |
strength=strength,
|
86 |
-
guidance_scale=
|
87 |
-
num_inference_steps=
|
88 |
).images[0]
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# Clear GPU memory
|
91 |
if torch.cuda.is_available():
|
92 |
torch.cuda.empty_cache()
|
93 |
|
94 |
-
|
|
|
95 |
|
96 |
except Exception as e:
|
97 |
logger.error(f"Processing error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
return None, f"Error: {str(e)}"
|
99 |
|
100 |
def create_interface():
|
101 |
-
"""Create Gradio interface"""
|
102 |
|
103 |
with gr.Blocks(
|
104 |
title="π FaceSpace Studio",
|
105 |
-
theme=gr.themes.Soft(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
) as demo:
|
107 |
|
108 |
gr.Markdown("""
|
109 |
-
# π FaceSpace Studio
|
110 |
|
111 |
-
**
|
112 |
|
113 |
-
|
114 |
""")
|
115 |
|
116 |
-
with gr.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
|
|
|
|
|
|
129 |
with gr.Row():
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
step=5,
|
154 |
-
info="More steps = better quality but slower"
|
155 |
)
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
|
171 |
-
#
|
172 |
enhance_btn.click(
|
173 |
-
fn=
|
174 |
-
inputs=[input_image, prompt, strength,
|
175 |
-
outputs=[output_image, status_text]
|
176 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
return demo
|
179 |
|
180 |
-
# Initialize
|
181 |
-
|
182 |
-
initialize_pipeline()
|
183 |
|
184 |
-
# Create
|
185 |
demo = create_interface()
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
FaceSpace Studio - Advanced Face Manipulation Platform
|
4 |
+
Combines face detection, enhancement, swapping, and style transfer
|
5 |
+
Optimized for Hugging Face Spaces deployment
|
6 |
"""
|
7 |
|
8 |
import gradio as gr
|
9 |
import torch
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
from PIL import Image
|
|
|
|
|
13 |
import os
|
14 |
+
import tempfile
|
15 |
+
import subprocess
|
16 |
+
from pathlib import Path
|
17 |
+
import logging
|
18 |
+
from functools import lru_cache
|
19 |
+
from typing import Tuple, Optional, List, Dict
|
20 |
+
import warnings
|
21 |
+
import json
|
22 |
+
import time
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from concurrent.futures import ThreadPoolExecutor
|
25 |
+
import threading
|
26 |
|
27 |
# Configure logging
|
28 |
logging.basicConfig(level=logging.INFO)
|
29 |
logger = logging.getLogger(__name__)
|
30 |
+
warnings.filterwarnings("ignore")
|
31 |
+
|
32 |
+
# Configuration
|
33 |
+
@dataclass
|
34 |
+
class Config:
|
35 |
+
"""Configuration for FaceSpace Studio"""
|
36 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
max_image_size: int = 1024
|
38 |
+
face_detection_size: Tuple[int, int] = (640, 640)
|
39 |
+
enhancement_steps: int = 20
|
40 |
+
video_fps: int = 12
|
41 |
+
max_video_frames: int = 60
|
42 |
+
enable_face_swap: bool = True
|
43 |
+
enable_style_transfer: bool = True
|
44 |
+
cache_dir: str = "/tmp/facespace_cache"
|
45 |
+
|
46 |
+
config = Config()
|
47 |
|
48 |
+
# Global model registry
|
49 |
+
models = {
|
50 |
+
"face_detector": None,
|
51 |
+
"face_enhancer": None,
|
52 |
+
"face_swapper": None,
|
53 |
+
"style_transfer": None,
|
54 |
+
"upscaler": None
|
55 |
+
}
|
56 |
+
|
57 |
+
# Thread lock for model loading
|
58 |
+
model_lock = threading.Lock()
|
59 |
+
|
60 |
+
def setup_environment():
|
61 |
+
"""Setup environment and directories"""
|
62 |
+
os.makedirs(config.cache_dir, exist_ok=True)
|
63 |
+
|
64 |
+
if config.device == "cuda":
|
65 |
+
# GPU optimizations
|
66 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
67 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
68 |
+
torch.backends.cudnn.allow_tf32 = True
|
69 |
+
torch.backends.cudnn.benchmark = True
|
70 |
+
|
71 |
+
logger.info(f"Device: {config.device}")
|
72 |
+
if config.device == "cuda":
|
73 |
+
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
74 |
|
75 |
+
@lru_cache(maxsize=1)
|
76 |
+
def load_face_detector():
|
77 |
+
"""Load InsightFace with fallback options"""
|
78 |
try:
|
79 |
+
# Try importing InsightFace
|
80 |
+
from insightface.app import FaceAnalysis
|
81 |
+
|
82 |
+
# Try GPU first, fallback to CPU
|
83 |
+
providers = ['CPUExecutionProvider']
|
84 |
+
if config.device == "cuda":
|
85 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
86 |
+
|
87 |
+
app = FaceAnalysis(
|
88 |
+
name='buffalo_l',
|
89 |
+
providers=providers,
|
90 |
+
allowed_modules=['detection', 'recognition']
|
91 |
+
)
|
92 |
+
app.prepare(ctx_id=0 if config.device == "cuda" else -1,
|
93 |
+
det_size=config.face_detection_size)
|
94 |
+
|
95 |
+
logger.info("InsightFace loaded successfully")
|
96 |
+
return app
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
logger.warning(f"InsightFace not available: {e}, using OpenCV fallback")
|
100 |
+
|
101 |
+
# Fallback to OpenCV face detection
|
102 |
+
class OpenCVFaceDetector:
|
103 |
+
def __init__(self):
|
104 |
+
self.cascade = cv2.CascadeClassifier(
|
105 |
+
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
106 |
+
)
|
107 |
+
|
108 |
+
def get(self, img):
|
109 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
110 |
+
faces = self.cascade.detectMultiScale(gray, 1.1, 4)
|
111 |
+
|
112 |
+
# Convert to InsightFace-like format
|
113 |
+
results = []
|
114 |
+
for (x, y, w, h) in faces:
|
115 |
+
face_dict = type('obj', (object,), {
|
116 |
+
'bbox': np.array([x, y, x+w, y+h]),
|
117 |
+
'det_score': 0.99,
|
118 |
+
'landmark': None
|
119 |
+
})()
|
120 |
+
results.append(face_dict)
|
121 |
+
return results
|
122 |
+
|
123 |
+
return OpenCVFaceDetector()
|
124 |
+
|
125 |
+
@lru_cache(maxsize=1)
|
126 |
+
def load_enhancement_pipeline():
|
127 |
+
"""Load Stable Diffusion with optimizations"""
|
128 |
+
try:
|
129 |
+
from diffusers import StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
130 |
|
131 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
132 |
"runwayml/stable-diffusion-v1-5",
|
133 |
+
torch_dtype=torch.float16 if config.device == "cuda" else torch.float32,
|
134 |
safety_checker=None,
|
135 |
requires_safety_checker=False
|
136 |
)
|
137 |
|
138 |
+
# Optimized scheduler
|
139 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
140 |
+
pipe.scheduler.config,
|
141 |
+
use_karras_sigmas=True
|
142 |
+
)
|
143 |
+
|
144 |
+
pipe = pipe.to(config.device)
|
145 |
|
146 |
+
# Memory optimizations
|
147 |
+
if config.device == "cuda":
|
148 |
pipe.enable_attention_slicing()
|
149 |
+
pipe.enable_vae_slicing()
|
150 |
+
try:
|
151 |
+
pipe.enable_xformers_memory_efficient_attention()
|
152 |
+
except:
|
153 |
+
pass
|
154 |
|
155 |
+
logger.info("Enhancement pipeline loaded")
|
156 |
+
return pipe
|
157 |
|
158 |
except Exception as e:
|
159 |
+
logger.error(f"Failed to load enhancement pipeline: {e}")
|
160 |
+
return None
|
161 |
+
|
162 |
+
def extract_faces(image: Image.Image, detector) -> List[Dict]:
|
163 |
+
"""Extract all faces from image with metadata"""
|
164 |
+
try:
|
165 |
+
# Convert to CV2 format
|
166 |
+
img_cv2 = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
167 |
+
|
168 |
+
# Detect faces
|
169 |
+
faces = detector.get(img_cv2)
|
170 |
+
|
171 |
+
if not faces:
|
172 |
+
return []
|
173 |
+
|
174 |
+
# Process each face
|
175 |
+
face_data = []
|
176 |
+
for idx, face in enumerate(faces):
|
177 |
+
bbox = face.bbox.astype(int)
|
178 |
+
x1, y1, x2, y2 = bbox
|
179 |
+
|
180 |
+
# Add padding
|
181 |
+
height, width = img_cv2.shape[:2]
|
182 |
+
pad = int(max(x2-x1, y2-y1) * 0.3)
|
183 |
+
|
184 |
+
x1 = max(0, x1 - pad)
|
185 |
+
y1 = max(0, y1 - pad)
|
186 |
+
x2 = min(width, x2 + pad)
|
187 |
+
y2 = min(height, y2 + pad)
|
188 |
+
|
189 |
+
# Extract face
|
190 |
+
face_img = img_cv2[y1:y2, x1:x2]
|
191 |
+
face_pil = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB))
|
192 |
+
|
193 |
+
face_data.append({
|
194 |
+
'id': idx,
|
195 |
+
'image': face_pil,
|
196 |
+
'bbox': (x1, y1, x2, y2),
|
197 |
+
'confidence': getattr(face, 'det_score', 0.99),
|
198 |
+
'landmarks': getattr(face, 'landmark', None)
|
199 |
+
})
|
200 |
+
|
201 |
+
return face_data
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
logger.error(f"Face extraction error: {e}")
|
205 |
+
return []
|
206 |
+
|
207 |
+
def enhance_face(face_img: Image.Image,
|
208 |
+
pipe,
|
209 |
+
prompt: str = "a beautiful person, detailed face, high quality",
|
210 |
+
strength: float = 0.6) -> Image.Image:
|
211 |
+
"""Enhance a single face using SD"""
|
212 |
try:
|
213 |
+
# Resize to optimal size
|
214 |
+
face_img = face_img.resize((512, 512), Image.LANCZOS)
|
215 |
+
|
216 |
+
# Generate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
with torch.inference_mode():
|
218 |
result = pipe(
|
219 |
prompt=prompt,
|
220 |
+
image=face_img,
|
221 |
strength=strength,
|
222 |
+
guidance_scale=7.5,
|
223 |
+
num_inference_steps=config.enhancement_steps
|
224 |
).images[0]
|
225 |
|
226 |
+
return result
|
227 |
+
|
228 |
+
except Exception as e:
|
229 |
+
logger.error(f"Enhancement error: {e}")
|
230 |
+
return face_img
|
231 |
+
|
232 |
+
def blend_face(original: Image.Image,
|
233 |
+
face: Image.Image,
|
234 |
+
bbox: Tuple[int, int, int, int],
|
235 |
+
method: str = "poisson") -> Image.Image:
|
236 |
+
"""Blend enhanced face back into original image"""
|
237 |
+
try:
|
238 |
+
x1, y1, x2, y2 = bbox
|
239 |
+
face_width = x2 - x1
|
240 |
+
face_height = y2 - y1
|
241 |
+
|
242 |
+
# Resize face to match bbox
|
243 |
+
face = face.resize((face_width, face_height), Image.LANCZOS)
|
244 |
+
|
245 |
+
# Convert to arrays
|
246 |
+
orig_array = np.array(original)
|
247 |
+
face_array = np.array(face)
|
248 |
+
|
249 |
+
if method == "poisson" and face_array.shape[0] > 5 and face_array.shape[1] > 5:
|
250 |
+
try:
|
251 |
+
# Create mask
|
252 |
+
mask = np.ones(face_array.shape[:2], dtype=np.uint8) * 255
|
253 |
+
|
254 |
+
# Calculate center
|
255 |
+
center = (x1 + face_width // 2, y1 + face_height // 2)
|
256 |
+
|
257 |
+
# Apply Poisson blending
|
258 |
+
orig_cv2 = cv2.cvtColor(orig_array, cv2.COLOR_RGB2BGR)
|
259 |
+
face_cv2 = cv2.cvtColor(face_array, cv2.COLOR_RGB2BGR)
|
260 |
+
|
261 |
+
result = cv2.seamlessClone(
|
262 |
+
face_cv2, orig_cv2, mask, center, cv2.NORMAL_CLONE
|
263 |
+
)
|
264 |
+
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
|
265 |
+
|
266 |
+
return Image.fromarray(result)
|
267 |
+
|
268 |
+
except Exception as e:
|
269 |
+
logger.warning(f"Poisson blend failed: {e}, using alpha blend")
|
270 |
+
method = "alpha"
|
271 |
+
|
272 |
+
if method == "alpha":
|
273 |
+
# Simple alpha blending with feathering
|
274 |
+
result = orig_array.copy()
|
275 |
+
|
276 |
+
# Create feathered mask
|
277 |
+
mask = np.ones((face_height, face_width))
|
278 |
+
y_indices, x_indices = np.ogrid[:face_height, :face_width]
|
279 |
+
|
280 |
+
# Distance from edges
|
281 |
+
dist_from_edge = np.minimum.reduce([
|
282 |
+
x_indices,
|
283 |
+
face_width - 1 - x_indices,
|
284 |
+
y_indices,
|
285 |
+
face_height - 1 - y_indices
|
286 |
+
])
|
287 |
+
|
288 |
+
# Feather edges
|
289 |
+
feather_width = min(face_width, face_height) // 8
|
290 |
+
mask = np.clip(dist_from_edge / feather_width, 0, 1)
|
291 |
+
mask = mask[:, :, np.newaxis]
|
292 |
+
|
293 |
+
# Blend
|
294 |
+
alpha = 0.8
|
295 |
+
result[y1:y2, x1:x2] = (
|
296 |
+
face_array * mask * alpha +
|
297 |
+
orig_array[y1:y2, x1:x2] * (1 - mask * alpha)
|
298 |
+
).astype(np.uint8)
|
299 |
+
|
300 |
+
return Image.fromarray(result)
|
301 |
+
|
302 |
+
except Exception as e:
|
303 |
+
logger.error(f"Blending error: {e}")
|
304 |
+
return original
|
305 |
+
|
306 |
+
def process_image(image: Image.Image,
|
307 |
+
prompt: str = "beautiful person, detailed face",
|
308 |
+
strength: float = 0.6,
|
309 |
+
enhance_all: bool = True,
|
310 |
+
selected_faces: List[int] = None) -> Tuple[Image.Image, str, List[Dict]]:
|
311 |
+
"""Main processing function for images"""
|
312 |
+
|
313 |
+
if not image:
|
314 |
+
return None, "Please upload an image", []
|
315 |
+
|
316 |
+
try:
|
317 |
+
# Load models
|
318 |
+
with model_lock:
|
319 |
+
if not models["face_detector"]:
|
320 |
+
models["face_detector"] = load_face_detector()
|
321 |
+
if not models["face_enhancer"]:
|
322 |
+
models["face_enhancer"] = load_enhancement_pipeline()
|
323 |
+
|
324 |
+
detector = models["face_detector"]
|
325 |
+
enhancer = models["face_enhancer"]
|
326 |
+
|
327 |
+
if not detector or not enhancer:
|
328 |
+
return None, "Models not loaded properly", []
|
329 |
+
|
330 |
+
# Extract faces
|
331 |
+
faces = extract_faces(image, detector)
|
332 |
+
|
333 |
+
if not faces:
|
334 |
+
return image, "No faces detected", []
|
335 |
+
|
336 |
+
# Determine which faces to process
|
337 |
+
if enhance_all:
|
338 |
+
faces_to_process = faces
|
339 |
+
elif selected_faces:
|
340 |
+
faces_to_process = [f for f in faces if f['id'] in selected_faces]
|
341 |
+
else:
|
342 |
+
faces_to_process = [faces[0]] # Process largest face
|
343 |
+
|
344 |
+
# Process each face
|
345 |
+
result = image.copy()
|
346 |
+
processed_count = 0
|
347 |
+
|
348 |
+
for face_data in faces_to_process:
|
349 |
+
try:
|
350 |
+
# Enhance face
|
351 |
+
enhanced = enhance_face(
|
352 |
+
face_data['image'],
|
353 |
+
enhancer,
|
354 |
+
prompt,
|
355 |
+
strength
|
356 |
+
)
|
357 |
+
|
358 |
+
# Blend back
|
359 |
+
result = blend_face(
|
360 |
+
result,
|
361 |
+
enhanced,
|
362 |
+
face_data['bbox']
|
363 |
+
)
|
364 |
+
|
365 |
+
processed_count += 1
|
366 |
+
|
367 |
+
except Exception as e:
|
368 |
+
logger.error(f"Error processing face {face_data['id']}: {e}")
|
369 |
+
|
370 |
# Clear GPU memory
|
371 |
if torch.cuda.is_available():
|
372 |
torch.cuda.empty_cache()
|
373 |
|
374 |
+
status = f"β
Enhanced {processed_count}/{len(faces)} faces"
|
375 |
+
return result, status, faces
|
376 |
|
377 |
except Exception as e:
|
378 |
logger.error(f"Processing error: {e}")
|
379 |
+
return None, f"Error: {str(e)}", []
|
380 |
+
|
381 |
+
def swap_faces(source_image: Image.Image,
|
382 |
+
target_image: Image.Image,
|
383 |
+
mode: str = "Single Face",
|
384 |
+
preserve_expression: bool = True) -> Tuple[Image.Image, str]:
|
385 |
+
"""Swap faces between images using enhanced source face"""
|
386 |
+
|
387 |
+
if not source_image or not target_image:
|
388 |
+
return None, "Please provide both source and target images"
|
389 |
+
|
390 |
+
try:
|
391 |
+
# Load models
|
392 |
+
with model_lock:
|
393 |
+
if not models["face_detector"]:
|
394 |
+
models["face_detector"] = load_face_detector()
|
395 |
+
if not models["face_enhancer"]:
|
396 |
+
models["face_enhancer"] = load_enhancement_pipeline()
|
397 |
+
|
398 |
+
detector = models["face_detector"]
|
399 |
+
enhancer = models["face_enhancer"]
|
400 |
+
|
401 |
+
if not detector:
|
402 |
+
return None, "Face detector not loaded"
|
403 |
+
|
404 |
+
# Extract faces
|
405 |
+
source_faces = extract_faces(source_image, detector)
|
406 |
+
target_faces = extract_faces(target_image, detector)
|
407 |
+
|
408 |
+
if not source_faces:
|
409 |
+
return None, "No face detected in source image"
|
410 |
+
if not target_faces:
|
411 |
+
return None, "No face detected in target image"
|
412 |
+
|
413 |
+
# Get source face (use the first/largest)
|
414 |
+
source_face = source_faces[0]['image']
|
415 |
+
|
416 |
+
# Determine which target faces to swap
|
417 |
+
if mode == "Single Face":
|
418 |
+
faces_to_swap = [target_faces[0]] # Just the first face
|
419 |
+
elif mode == "All Faces":
|
420 |
+
faces_to_swap = target_faces
|
421 |
+
else:
|
422 |
+
# For selected faces, just use first for now
|
423 |
+
faces_to_swap = [target_faces[0]]
|
424 |
+
|
425 |
+
# Process swapping
|
426 |
+
result = target_image.copy()
|
427 |
+
swapped_count = 0
|
428 |
+
|
429 |
+
for target_face in faces_to_swap:
|
430 |
+
try:
|
431 |
+
# Resize source face to match target
|
432 |
+
target_size = target_face['image'].size
|
433 |
+
source_resized = source_face.resize(target_size, Image.LANCZOS)
|
434 |
+
|
435 |
+
if enhancer and preserve_expression:
|
436 |
+
# Use SD to blend features while preserving expression
|
437 |
+
prompt = "person, natural expression, photorealistic face"
|
438 |
+
|
439 |
+
# Blend source and target for expression preservation
|
440 |
+
blended = Image.blend(source_resized, target_face['image'], 0.3)
|
441 |
+
|
442 |
+
# Enhance the blended face
|
443 |
+
swapped_face = enhance_face(
|
444 |
+
blended,
|
445 |
+
enhancer,
|
446 |
+
prompt,
|
447 |
+
strength=0.7
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
# Direct swap without enhancement
|
451 |
+
swapped_face = source_resized
|
452 |
+
|
453 |
+
# Blend back into target image
|
454 |
+
result = blend_face(
|
455 |
+
result,
|
456 |
+
swapped_face,
|
457 |
+
target_face['bbox'],
|
458 |
+
method="poisson" if preserve_expression else "alpha"
|
459 |
+
)
|
460 |
+
|
461 |
+
swapped_count += 1
|
462 |
+
|
463 |
+
except Exception as e:
|
464 |
+
logger.error(f"Error swapping face: {e}")
|
465 |
+
|
466 |
+
# Clear GPU memory
|
467 |
+
if torch.cuda.is_available():
|
468 |
+
torch.cuda.empty_cache()
|
469 |
+
|
470 |
+
status = f"β
Swapped {swapped_count} face(s)"
|
471 |
+
return result, status
|
472 |
+
|
473 |
+
except Exception as e:
|
474 |
+
logger.error(f"Face swap error: {e}")
|
475 |
return None, f"Error: {str(e)}"
|
476 |
|
477 |
def create_interface():
|
478 |
+
"""Create Gradio interface with all features"""
|
479 |
|
480 |
with gr.Blocks(
|
481 |
title="π FaceSpace Studio",
|
482 |
+
theme=gr.themes.Soft(
|
483 |
+
primary_hue="purple",
|
484 |
+
secondary_hue="blue"
|
485 |
+
),
|
486 |
+
css="""
|
487 |
+
.gradio-container {
|
488 |
+
max-width: 1200px;
|
489 |
+
margin: auto;
|
490 |
+
}
|
491 |
+
.face-box {
|
492 |
+
border: 2px solid #9333ea;
|
493 |
+
border-radius: 8px;
|
494 |
+
padding: 10px;
|
495 |
+
margin: 5px;
|
496 |
+
}
|
497 |
+
"""
|
498 |
) as demo:
|
499 |
|
500 |
gr.Markdown("""
|
501 |
+
# π FaceSpace Studio - Advanced Face Manipulation
|
502 |
|
503 |
+
**Features**: Face Detection β’ Enhancement β’ Style Transfer β’ Batch Processing
|
504 |
|
505 |
+
Powered by InsightFace + Stable Diffusion + Advanced Blending
|
506 |
""")
|
507 |
|
508 |
+
with gr.Tabs():
|
509 |
+
# Face Enhancement Tab
|
510 |
+
with gr.TabItem("β¨ Face Enhancement"):
|
511 |
+
with gr.Row():
|
512 |
+
with gr.Column():
|
513 |
+
input_image = gr.Image(
|
514 |
+
label="Upload Image",
|
515 |
+
type="pil"
|
516 |
+
)
|
517 |
+
|
518 |
+
prompt = gr.Textbox(
|
519 |
+
label="Enhancement Prompt",
|
520 |
+
value="beautiful person, detailed face, professional photo",
|
521 |
+
lines=2
|
522 |
+
)
|
523 |
+
|
524 |
+
with gr.Row():
|
525 |
+
strength = gr.Slider(
|
526 |
+
label="Enhancement Strength",
|
527 |
+
minimum=0.1,
|
528 |
+
maximum=0.9,
|
529 |
+
value=0.6,
|
530 |
+
step=0.1
|
531 |
+
)
|
532 |
+
|
533 |
+
enhance_all = gr.Checkbox(
|
534 |
+
label="Enhance All Faces",
|
535 |
+
value=True
|
536 |
+
)
|
537 |
+
|
538 |
+
enhance_btn = gr.Button(
|
539 |
+
"β¨ Enhance Faces",
|
540 |
+
variant="primary",
|
541 |
+
size="lg"
|
542 |
+
)
|
543 |
+
|
544 |
+
with gr.Column():
|
545 |
+
output_image = gr.Image(
|
546 |
+
label="Enhanced Result"
|
547 |
+
)
|
548 |
+
|
549 |
+
status_text = gr.Textbox(
|
550 |
+
label="Status",
|
551 |
+
interactive=False
|
552 |
+
)
|
553 |
+
|
554 |
+
face_info = gr.JSON(
|
555 |
+
label="Detected Faces",
|
556 |
+
visible=False
|
557 |
+
)
|
558 |
|
559 |
+
|
560 |
+
# Face Swap Tab
|
561 |
+
with gr.TabItem("π Face Swap"):
|
562 |
with gr.Row():
|
563 |
+
with gr.Column():
|
564 |
+
source_img = gr.Image(
|
565 |
+
label="Source Face (to copy)",
|
566 |
+
type="pil"
|
567 |
+
)
|
568 |
+
target_img = gr.Image(
|
569 |
+
label="Target Image (to paste into)",
|
570 |
+
type="pil"
|
571 |
+
)
|
572 |
+
|
573 |
+
swap_mode = gr.Radio(
|
574 |
+
choices=["Single Face", "All Faces", "Selected Faces"],
|
575 |
+
value="Single Face",
|
576 |
+
label="Swap Mode"
|
577 |
+
)
|
578 |
+
|
579 |
+
preserve_expression = gr.Checkbox(
|
580 |
+
label="Preserve Target Expression",
|
581 |
+
value=True
|
582 |
+
)
|
583 |
+
|
584 |
+
swap_btn = gr.Button(
|
585 |
+
"π Swap Faces",
|
586 |
+
variant="primary",
|
587 |
+
size="lg"
|
588 |
+
)
|
589 |
|
590 |
+
with gr.Column():
|
591 |
+
swap_result = gr.Image(
|
592 |
+
label="Swapped Result"
|
593 |
+
)
|
594 |
+
swap_status = gr.Textbox(
|
595 |
+
label="Status",
|
596 |
+
interactive=False
|
597 |
+
)
|
598 |
+
|
599 |
+
gr.Markdown("""
|
600 |
+
### Tips:
|
601 |
+
- Source image should have a clear face
|
602 |
+
- Works best with similar face angles
|
603 |
+
- Enable expression preservation for natural results
|
604 |
+
""")
|
605 |
|
606 |
+
# Face swap handler
|
607 |
+
swap_btn.click(
|
608 |
+
fn=lambda s, t, m, e: swap_faces(s, t, m, e),
|
609 |
+
inputs=[source_img, target_img, swap_mode, preserve_expression],
|
610 |
+
outputs=[swap_result, swap_status]
|
|
|
|
|
611 |
)
|
612 |
+
|
613 |
+
# Style Transfer Tab (Placeholder)
|
614 |
+
with gr.TabItem("π¨ Style Transfer"):
|
615 |
+
gr.Markdown("""
|
616 |
+
### Style Transfer - Coming Soon!
|
617 |
|
618 |
+
Features in development:
|
619 |
+
- Artistic styles (oil painting, sketch, anime)
|
620 |
+
- Age progression/regression
|
621 |
+
- Gender transformation
|
622 |
+
- Celebrity style transfer
|
623 |
+
""")
|
624 |
|
625 |
+
# Batch Processing Tab (Placeholder)
|
626 |
+
with gr.TabItem("π¦ Batch Processing"):
|
627 |
+
gr.Markdown("""
|
628 |
+
### Batch Processing - Coming Soon!
|
629 |
+
|
630 |
+
Features in development:
|
631 |
+
- Process multiple images
|
632 |
+
- Video frame extraction
|
633 |
+
- Folder upload/download
|
634 |
+
- Progress tracking
|
635 |
+
""")
|
636 |
|
637 |
+
# Event handlers
|
638 |
enhance_btn.click(
|
639 |
+
fn=process_image,
|
640 |
+
inputs=[input_image, prompt, strength, enhance_all],
|
641 |
+
outputs=[output_image, status_text, face_info]
|
642 |
)
|
643 |
+
|
644 |
+
gr.Markdown("""
|
645 |
+
---
|
646 |
+
### π§ Technical Details
|
647 |
+
|
648 |
+
- **Face Detection**: InsightFace buffalo_l / OpenCV fallback
|
649 |
+
- **Enhancement**: Stable Diffusion v1.5 with DPM++ scheduler
|
650 |
+
- **Blending**: Poisson seamless cloning + Alpha feathering
|
651 |
+
- **Optimization**: GPU acceleration, XFormers, VAE slicing
|
652 |
+
|
653 |
+
Made with β€οΈ using advanced AI models
|
654 |
+
""")
|
655 |
|
656 |
return demo
|
657 |
|
658 |
+
# Initialize environment
|
659 |
+
setup_environment()
|
|
|
660 |
|
661 |
+
# Create interface
|
662 |
demo = create_interface()
|
663 |
|
664 |
if __name__ == "__main__":
|
665 |
+
demo.launch(
|
666 |
+
server_name="0.0.0.0",
|
667 |
+
server_port=7860,
|
668 |
+
show_error=True
|
669 |
+
)
|
@@ -1,11 +1,11 @@
|
|
1 |
-
# FaceSpace - HF Spaces
|
2 |
|
3 |
-
# Core ML Framework
|
4 |
torch==2.0.1
|
5 |
torchvision==0.15.2
|
6 |
--extra-index-url https://download.pytorch.org/whl/cu118
|
7 |
|
8 |
-
# Hugging Face Ecosystem
|
9 |
gradio==3.50.2
|
10 |
diffusers==0.24.0
|
11 |
transformers==4.36.0
|
@@ -18,11 +18,17 @@ Pillow==10.1.0
|
|
18 |
numpy==1.24.3
|
19 |
scipy==1.11.4
|
20 |
|
21 |
-
# Face Processing
|
22 |
insightface==0.7.3
|
23 |
-
onnxruntime==1.16.3
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
26 |
tqdm==4.66.1
|
27 |
requests==2.31.0
|
28 |
packaging==23.2
|
|
|
|
|
|
|
|
1 |
+
# FaceSpace Studio - HF Spaces Optimized Requirements
|
2 |
|
3 |
+
# Core ML Framework
|
4 |
torch==2.0.1
|
5 |
torchvision==0.15.2
|
6 |
--extra-index-url https://download.pytorch.org/whl/cu118
|
7 |
|
8 |
+
# Hugging Face Ecosystem
|
9 |
gradio==3.50.2
|
10 |
diffusers==0.24.0
|
11 |
transformers==4.36.0
|
|
|
18 |
numpy==1.24.3
|
19 |
scipy==1.11.4
|
20 |
|
21 |
+
# Face Processing (with fallback support)
|
22 |
insightface==0.7.3
|
23 |
+
onnxruntime==1.16.3 # CPU version for better compatibility
|
24 |
|
25 |
+
# Performance Optimizations (optional)
|
26 |
+
xformers==0.0.22 # Compatible with torch 2.0.1
|
27 |
+
|
28 |
+
# Utilities
|
29 |
tqdm==4.66.1
|
30 |
requests==2.31.0
|
31 |
packaging==23.2
|
32 |
+
|
33 |
+
# Video processing (optional)
|
34 |
+
ffmpeg-python==0.2.0
|