gaur3009 commited on
Commit
490bf43
·
verified ·
1 Parent(s): 3758aa6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -40
app.py CHANGED
@@ -14,36 +14,29 @@ state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Rem
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
17
- def remove_background(image_np):
18
- """Removes background using U²-Net and replaces it with white."""
19
-
20
- transform_pipeline = transforms.Compose([
21
- transforms.ToTensor(),
22
- transforms.Resize((320, 320))
23
- ])
24
-
25
- image = Image.fromarray(image_np).convert("RGB")
26
- input_tensor = transform_pipeline(image).unsqueeze(0)
27
 
28
- with torch.no_grad():
29
- output = model(input_tensor)[0][0].squeeze().cpu().numpy()
30
-
31
- mask = (output > 0.5).astype(np.uint8) * 255
32
- mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
33
 
34
- white_bg = np.ones_like(image_np) * 255 # White background
35
- segmented_image = np.where(mask[..., None] > 128, image_np, white_bg)
36
 
37
- return segmented_image, mask
38
 
39
  def segment_dress(image_np):
40
- """Segments the dress using K-means and refines with U²-Net."""
41
 
42
- # Convert to Lab color space
43
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
44
- pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
45
 
46
- # K-means clustering to detect dress region
 
47
  k = 3 # Three clusters: background, skin, dress
48
  _, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
49
  labels = labels.reshape(image_np.shape[:2])
@@ -55,7 +48,7 @@ def segment_dress(image_np):
55
  # Create dress mask
56
  mask = (labels == dress_label).astype(np.uint8) * 255
57
 
58
- # Refine with U²-Net prediction
59
  transform_pipeline = transforms.Compose([
60
  transforms.ToTensor(),
61
  transforms.Resize((320, 320))
@@ -70,7 +63,7 @@ def segment_dress(image_np):
70
  u2net_mask = (output > 0.5).astype(np.uint8) * 255
71
  u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
72
 
73
- # Combine masks
74
  refined_mask = cv2.bitwise_and(mask, u2net_mask)
75
 
76
  # Morphological operations for smoothness
@@ -80,11 +73,15 @@ def segment_dress(image_np):
80
 
81
  return refined_mask
82
 
83
- def recolor_dress(image_np, mask, target_color):
84
- """Change dress color while keeping the white background intact."""
85
 
86
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
87
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
 
 
 
 
88
 
89
  # Preserve lightness (L) and change only chromatic channels (A & B)
90
  blend_factor = 0.7
@@ -92,27 +89,26 @@ def recolor_dress(image_np, mask, target_color):
92
  img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
93
 
94
  img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
95
-
96
  return img_recolored
97
 
98
- def process_image(image_path, color):
99
- """Remove background, segment dress, and recolor while keeping background white."""
100
  if image_path is None:
101
  return None
102
 
103
  img = Image.open(image_path).convert("RGB")
104
  img_np = np.array(img)
105
 
106
- # Remove background
107
- img_segmented, _ = remove_background(img_np)
108
 
109
  # Get dress segmentation mask
110
  mask = segment_dress(img_np)
111
 
112
  if mask is None:
113
- return Image.fromarray(img_segmented) # No dress detected, return only background removal
114
-
115
- # Convert selected color to BGR
116
  color_map = {
117
  "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255),
118
  "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255),
@@ -120,21 +116,26 @@ def process_image(image_path, color):
120
  }
121
  new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
122
 
123
- # Apply recoloring
124
- img_recolored = recolor_dress(img_segmented, mask, new_color_bgr)
 
 
 
 
 
125
 
126
  return Image.fromarray(img_recolored)
127
 
128
  # Gradio Interface
129
  demo = gr.Interface(
130
- fn=process_image,
131
  inputs=[
132
  gr.Image(type="filepath", label="Upload Dress Image"),
133
  gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color")
134
  ],
135
- outputs=gr.Image(type="pil", label="Final Dress Image"),
136
- title="Dress Color Changer with Background Removal",
137
- description="Upload an image of a dress, remove its background, and recolor it naturally while keeping the background white."
138
  )
139
 
140
  if __name__ == "__main__":
 
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
17
+ def detect_design(image_np):
18
+ """Detects if a design exists on the dress using edge detection & clustering."""
19
+ gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
20
+ edges = cv2.Canny(gray, 50, 150)
 
 
 
 
 
 
21
 
22
+ # Dilation to highlight patterns
23
+ kernel = np.ones((3, 3), np.uint8)
24
+ edges = cv2.dilate(edges, kernel, iterations=1)
 
 
25
 
26
+ # Count edge density
27
+ design_ratio = np.sum(edges > 0) / (image_np.shape[0] * image_np.shape[1])
28
 
29
+ return design_ratio > 0.02, edges # If edge density is high, assume a design is present
30
 
31
  def segment_dress(image_np):
32
+ """Segment the dress using U²-Net & refine with Lab color space."""
33
 
34
+ # Convert to Lab space
35
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
36
+ L, A, B = cv2.split(img_lab)
37
 
38
+ # Use K-means clustering to detect dominant dress region
39
+ pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
40
  k = 3 # Three clusters: background, skin, dress
41
  _, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
42
  labels = labels.reshape(image_np.shape[:2])
 
48
  # Create dress mask
49
  mask = (labels == dress_label).astype(np.uint8) * 255
50
 
51
+ # Use U²-Net prediction to refine segmentation
52
  transform_pipeline = transforms.Compose([
53
  transforms.ToTensor(),
54
  transforms.Resize((320, 320))
 
63
  u2net_mask = (output > 0.5).astype(np.uint8) * 255
64
  u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
65
 
66
+ # Combine K-means and U²-Net masks
67
  refined_mask = cv2.bitwise_and(mask, u2net_mask)
68
 
69
  # Morphological operations for smoothness
 
73
 
74
  return refined_mask
75
 
76
+ def recolor_dress(image_np, mask, target_color, edges):
77
+ """Change dress color while preserving texture, shadows, and designs."""
78
 
79
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
80
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
81
+
82
+ # Exclude design from recoloring
83
+ design_mask = (edges > 0).astype(np.uint8) * 255
84
+ mask = cv2.bitwise_and(mask, cv2.bitwise_not(design_mask))
85
 
86
  # Preserve lightness (L) and change only chromatic channels (A & B)
87
  blend_factor = 0.7
 
89
  img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
90
 
91
  img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
 
92
  return img_recolored
93
 
94
+ def change_dress_color(image_path, color):
95
+ """Change the dress color naturally while keeping designs intact."""
96
  if image_path is None:
97
  return None
98
 
99
  img = Image.open(image_path).convert("RGB")
100
  img_np = np.array(img)
101
 
102
+ # Detect if a design is present
103
+ design_present, edges = detect_design(img_np)
104
 
105
  # Get dress segmentation mask
106
  mask = segment_dress(img_np)
107
 
108
  if mask is None:
109
+ return img # No dress detected
110
+
111
+ # Convert the selected color to BGR
112
  color_map = {
113
  "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255),
114
  "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255),
 
116
  }
117
  new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
118
 
119
+ # Apply recoloring logic
120
+ if design_present:
121
+ print("Design detected! Coloring only non-design areas.")
122
+ img_recolored = recolor_dress(img_np, mask, new_color_bgr, edges)
123
+ else:
124
+ print("No design detected. Coloring entire dress.")
125
+ img_recolored = recolor_dress(img_np, mask, new_color_bgr, np.zeros_like(mask)) # No design mask
126
 
127
  return Image.fromarray(img_recolored)
128
 
129
  # Gradio Interface
130
  demo = gr.Interface(
131
+ fn=change_dress_color,
132
  inputs=[
133
  gr.Image(type="filepath", label="Upload Dress Image"),
134
  gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color")
135
  ],
136
+ outputs=gr.Image(type="pil", label="Color Changed Dress"),
137
+ title="Dress Color Changer",
138
+ description="Upload an image of a dress and select a new color to change its appearance naturally while preserving designs."
139
  )
140
 
141
  if __name__ == "__main__":