gaur3009 commited on
Commit
6ee3f1f
·
verified ·
1 Parent(s): f6a6474

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -14
app.py CHANGED
@@ -7,41 +7,61 @@ from torchvision import transforms
7
  from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
8
 
9
  # Load U²-Net model
10
- model_path = "cloth_segmentation/networks/u2net.pth" # Ensure this path is correct
11
  model = U2NET(3, 1)
12
-
13
- # Load the state dictionary
14
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
15
  state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
16
  model.load_state_dict(state_dict)
17
  model.eval()
18
 
19
  def segment_dress(image_np):
20
- """Segment the dress from the image using U²-Net and refine the mask."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  transform_pipeline = transforms.Compose([
22
  transforms.ToTensor(),
23
  transforms.Resize((320, 320))
24
  ])
 
25
  image = Image.fromarray(image_np).convert("RGB")
26
  input_tensor = transform_pipeline(image).unsqueeze(0)
27
-
28
  with torch.no_grad():
29
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
 
 
 
30
 
31
- mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask
32
-
33
- # Resize mask to original image size
34
- mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
35
-
36
- # Apply morphological operations for better segmentation
37
  kernel = np.ones((5, 5), np.uint8)
38
- mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps
39
- mask = cv2.GaussianBlur(mask, (15, 15), 5) # Smooth edges for natural blending
40
 
41
- return mask
42
 
43
  def recolor_dress(image_np, mask, target_color):
44
  """Change dress color while preserving texture and shadows."""
 
45
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
46
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
47
 
 
7
  from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
8
 
9
  # Load U²-Net model
10
+ model_path = "cloth_segmentation/networks/u2net.pth"
11
  model = U2NET(3, 1)
 
 
12
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
13
  state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
17
  def segment_dress(image_np):
18
+ """Segment the dress using U²-Net & refine with Lab color space."""
19
+
20
+ # Convert to Lab space
21
+ img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
22
+ L, A, B = cv2.split(img_lab)
23
+
24
+ # Use K-means clustering to detect dominant dress region
25
+ pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
26
+ k = 3 # Three clusters: background, skin, dress
27
+ _, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
28
+ labels = labels.reshape(image_np.shape[:2])
29
+
30
+ # Assume dress is the largest non-background cluster
31
+ unique_labels, counts = np.unique(labels, return_counts=True)
32
+ dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background
33
+
34
+ # Create dress mask
35
+ mask = (labels == dress_label).astype(np.uint8) * 255
36
+
37
+ # Use U²-Net prediction to refine segmentation
38
  transform_pipeline = transforms.Compose([
39
  transforms.ToTensor(),
40
  transforms.Resize((320, 320))
41
  ])
42
+
43
  image = Image.fromarray(image_np).convert("RGB")
44
  input_tensor = transform_pipeline(image).unsqueeze(0)
45
+
46
  with torch.no_grad():
47
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
48
+
49
+ u2net_mask = (output > 0.5).astype(np.uint8) * 255
50
+ u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
51
 
52
+ # Combine K-means and U²-Net masks
53
+ refined_mask = cv2.bitwise_and(mask, u2net_mask)
54
+
55
+ # Morphological operations for smoothness
 
 
56
  kernel = np.ones((5, 5), np.uint8)
57
+ refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
58
+ refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5)
59
 
60
+ return refined_mask
61
 
62
  def recolor_dress(image_np, mask, target_color):
63
  """Change dress color while preserving texture and shadows."""
64
+
65
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
66
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
67