Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,41 +7,61 @@ from torchvision import transforms
|
|
7 |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
|
8 |
|
9 |
# Load U²-Net model
|
10 |
-
model_path = "cloth_segmentation/networks/u2net.pth"
|
11 |
model = U2NET(3, 1)
|
12 |
-
|
13 |
-
# Load the state dictionary
|
14 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
15 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
|
16 |
model.load_state_dict(state_dict)
|
17 |
model.eval()
|
18 |
|
19 |
def segment_dress(image_np):
|
20 |
-
"""Segment the dress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
transform_pipeline = transforms.Compose([
|
22 |
transforms.ToTensor(),
|
23 |
transforms.Resize((320, 320))
|
24 |
])
|
|
|
25 |
image = Image.fromarray(image_np).convert("RGB")
|
26 |
input_tensor = transform_pipeline(image).unsqueeze(0)
|
27 |
-
|
28 |
with torch.no_grad():
|
29 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Apply morphological operations for better segmentation
|
37 |
kernel = np.ones((5, 5), np.uint8)
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
return
|
42 |
|
43 |
def recolor_dress(image_np, mask, target_color):
|
44 |
"""Change dress color while preserving texture and shadows."""
|
|
|
45 |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
46 |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
|
47 |
|
|
|
7 |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
|
8 |
|
9 |
# Load U²-Net model
|
10 |
+
model_path = "cloth_segmentation/networks/u2net.pth"
|
11 |
model = U2NET(3, 1)
|
|
|
|
|
12 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
13 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
|
14 |
model.load_state_dict(state_dict)
|
15 |
model.eval()
|
16 |
|
17 |
def segment_dress(image_np):
|
18 |
+
"""Segment the dress using U²-Net & refine with Lab color space."""
|
19 |
+
|
20 |
+
# Convert to Lab space
|
21 |
+
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
22 |
+
L, A, B = cv2.split(img_lab)
|
23 |
+
|
24 |
+
# Use K-means clustering to detect dominant dress region
|
25 |
+
pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
|
26 |
+
k = 3 # Three clusters: background, skin, dress
|
27 |
+
_, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
|
28 |
+
labels = labels.reshape(image_np.shape[:2])
|
29 |
+
|
30 |
+
# Assume dress is the largest non-background cluster
|
31 |
+
unique_labels, counts = np.unique(labels, return_counts=True)
|
32 |
+
dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background
|
33 |
+
|
34 |
+
# Create dress mask
|
35 |
+
mask = (labels == dress_label).astype(np.uint8) * 255
|
36 |
+
|
37 |
+
# Use U²-Net prediction to refine segmentation
|
38 |
transform_pipeline = transforms.Compose([
|
39 |
transforms.ToTensor(),
|
40 |
transforms.Resize((320, 320))
|
41 |
])
|
42 |
+
|
43 |
image = Image.fromarray(image_np).convert("RGB")
|
44 |
input_tensor = transform_pipeline(image).unsqueeze(0)
|
45 |
+
|
46 |
with torch.no_grad():
|
47 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
48 |
+
|
49 |
+
u2net_mask = (output > 0.5).astype(np.uint8) * 255
|
50 |
+
u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
|
51 |
|
52 |
+
# Combine K-means and U²-Net masks
|
53 |
+
refined_mask = cv2.bitwise_and(mask, u2net_mask)
|
54 |
+
|
55 |
+
# Morphological operations for smoothness
|
|
|
|
|
56 |
kernel = np.ones((5, 5), np.uint8)
|
57 |
+
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
|
58 |
+
refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5)
|
59 |
|
60 |
+
return refined_mask
|
61 |
|
62 |
def recolor_dress(image_np, mask, target_color):
|
63 |
"""Change dress color while preserving texture and shadows."""
|
64 |
+
|
65 |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
66 |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
|
67 |
|