Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,103 +7,74 @@ from torchvision import transforms
|
|
7 |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
|
8 |
|
9 |
# Load U²-Net model
|
10 |
-
model_path = "cloth_segmentation/networks/u2net.pth"
|
11 |
model = U2NET(3, 1)
|
|
|
|
|
12 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
13 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
|
14 |
model.load_state_dict(state_dict)
|
15 |
model.eval()
|
16 |
|
17 |
def segment_dress(image_np):
|
18 |
-
"""Segment the dress using U²-Net
|
19 |
-
|
20 |
-
# Convert to Lab space
|
21 |
-
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
22 |
-
L, A, B = cv2.split(img_lab)
|
23 |
-
|
24 |
-
# Use K-means clustering to detect dominant dress region
|
25 |
-
pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
|
26 |
-
k = 3 # Three clusters: background, skin, dress
|
27 |
-
_, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
|
28 |
-
labels = labels.reshape(image_np.shape[:2])
|
29 |
-
|
30 |
-
# Assume dress is the largest non-background cluster
|
31 |
-
unique_labels, counts = np.unique(labels, return_counts=True)
|
32 |
-
dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background
|
33 |
-
|
34 |
-
# Create dress mask
|
35 |
-
mask = (labels == dress_label).astype(np.uint8) * 255
|
36 |
-
|
37 |
-
# Use U²-Net prediction to refine segmentation
|
38 |
transform_pipeline = transforms.Compose([
|
39 |
transforms.ToTensor(),
|
40 |
transforms.Resize((320, 320))
|
41 |
])
|
42 |
-
|
43 |
image = Image.fromarray(image_np).convert("RGB")
|
44 |
input_tensor = transform_pipeline(image).unsqueeze(0)
|
45 |
-
|
46 |
with torch.no_grad():
|
47 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
48 |
-
|
49 |
-
u2net_mask = (output > 0.5).astype(np.uint8) * 255
|
50 |
-
u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
|
51 |
|
52 |
-
|
53 |
-
refined_mask = cv2.bitwise_and(mask, u2net_mask)
|
54 |
-
|
55 |
-
# Morphological operations for smoothness
|
56 |
-
kernel = np.ones((5, 5), np.uint8)
|
57 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
|
58 |
-
refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
def detect_design(image_np):
|
63 |
-
"""Detects design patterns on the dress using edge detection."""
|
64 |
-
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
65 |
-
edges = cv2.Canny(gray, 50, 150)
|
66 |
-
kernel = np.ones((3, 3), np.uint8)
|
67 |
-
design_mask = cv2.dilate(edges, kernel, iterations=2)
|
68 |
-
return design_mask
|
69 |
-
|
70 |
-
def recolor_dress(image_np, mask, design_mask, target_color):
|
71 |
-
"""Change dress color while preserving texture and design."""
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
blend_factor = 0.7
|
78 |
-
img_lab[..., 1] = np.where((mask > 128) & (design_mask == 0), img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1])
|
79 |
-
img_lab[..., 2] = np.where((mask > 128) & (design_mask == 0), img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
|
80 |
-
|
81 |
-
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
|
82 |
-
return img_recolored
|
83 |
|
84 |
def change_dress_color(image_path, color):
|
85 |
-
"""Change the dress color naturally while keeping textures
|
86 |
if image_path is None:
|
87 |
return None
|
88 |
|
89 |
img = Image.open(image_path).convert("RGB")
|
90 |
img_np = np.array(img)
|
91 |
mask = segment_dress(img_np)
|
92 |
-
|
93 |
-
|
94 |
if mask is None:
|
95 |
return img # No dress detected
|
96 |
|
97 |
# Convert the selected color to BGR
|
98 |
color_map = {
|
99 |
-
"Red": (0, 0, 255),
|
100 |
-
"
|
101 |
-
"
|
|
|
|
|
102 |
}
|
103 |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
|
104 |
|
105 |
-
#
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
return Image.fromarray(img_recolored)
|
109 |
|
@@ -112,11 +83,11 @@ demo = gr.Interface(
|
|
112 |
fn=change_dress_color,
|
113 |
inputs=[
|
114 |
gr.Image(type="filepath", label="Upload Dress Image"),
|
115 |
-
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"
|
116 |
],
|
117 |
outputs=gr.Image(type="pil", label="Color Changed Dress"),
|
118 |
title="Dress Color Changer",
|
119 |
-
description="Upload an image of a dress and select a new color to change its appearance naturally
|
120 |
)
|
121 |
|
122 |
if __name__ == "__main__":
|
|
|
7 |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
|
8 |
|
9 |
# Load U²-Net model
|
10 |
+
model_path = "cloth_segmentation/networks/u2net.pth" # Ensure this path is correct
|
11 |
model = U2NET(3, 1)
|
12 |
+
|
13 |
+
# Load the state dictionary
|
14 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
15 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
|
16 |
model.load_state_dict(state_dict)
|
17 |
model.eval()
|
18 |
|
19 |
def segment_dress(image_np):
|
20 |
+
"""Segment the dress from the image using U²-Net and refine the mask."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
transform_pipeline = transforms.Compose([
|
22 |
transforms.ToTensor(),
|
23 |
transforms.Resize((320, 320))
|
24 |
])
|
|
|
25 |
image = Image.fromarray(image_np).convert("RGB")
|
26 |
input_tensor = transform_pipeline(image).unsqueeze(0)
|
27 |
+
|
28 |
with torch.no_grad():
|
29 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
|
|
|
|
|
|
30 |
|
31 |
+
mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Resize mask to original image size
|
34 |
+
mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Apply morphological operations for better segmentation
|
37 |
+
kernel = np.ones((7, 7), np.uint8)
|
38 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps
|
39 |
+
mask = cv2.dilate(mask, kernel, iterations=2) # Expand the detected dress area
|
40 |
|
41 |
+
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def change_dress_color(image_path, color):
|
44 |
+
"""Change the dress color naturally while keeping textures."""
|
45 |
if image_path is None:
|
46 |
return None
|
47 |
|
48 |
img = Image.open(image_path).convert("RGB")
|
49 |
img_np = np.array(img)
|
50 |
mask = segment_dress(img_np)
|
51 |
+
|
|
|
52 |
if mask is None:
|
53 |
return img # No dress detected
|
54 |
|
55 |
# Convert the selected color to BGR
|
56 |
color_map = {
|
57 |
+
"Red": (0, 0, 255),
|
58 |
+
"Blue": (255, 0, 0),
|
59 |
+
"Green": (0, 255, 0),
|
60 |
+
"Yellow": (0, 255, 255),
|
61 |
+
"Purple": (128, 0, 128)
|
62 |
}
|
63 |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
|
64 |
|
65 |
+
# Convert image to LAB color space for better blending
|
66 |
+
img_lab = cv2.cvtColor(img_np, cv2.COLOR_RGB2LAB)
|
67 |
+
new_color_lab = cv2.cvtColor(np.uint8([[new_color_bgr]]), cv2.COLOR_BGR2LAB)[0][0]
|
68 |
+
|
69 |
+
# Preserve texture by only modifying the A & B channels
|
70 |
+
img_lab[..., 1] = np.where(mask == 255, new_color_lab[1], img_lab[..., 1]) # Modify A-channel
|
71 |
+
img_lab[..., 2] = np.where(mask == 255, new_color_lab[2], img_lab[..., 2]) # Modify B-channel
|
72 |
+
|
73 |
+
# Convert back to RGB
|
74 |
+
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
|
75 |
+
|
76 |
+
# Apply Poisson blending for realistic color application
|
77 |
+
img_recolored = cv2.seamlessClone(img_recolored, img_np, mask, (img_np.shape[1]//2, img_np.shape[0]//2), cv2.NORMAL_CLONE)
|
78 |
|
79 |
return Image.fromarray(img_recolored)
|
80 |
|
|
|
83 |
fn=change_dress_color,
|
84 |
inputs=[
|
85 |
gr.Image(type="filepath", label="Upload Dress Image"),
|
86 |
+
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color")
|
87 |
],
|
88 |
outputs=gr.Image(type="pil", label="Color Changed Dress"),
|
89 |
title="Dress Color Changer",
|
90 |
+
description="Upload an image of a dress and select a new color to change its appearance naturally."
|
91 |
)
|
92 |
|
93 |
if __name__ == "__main__":
|