gaur3009 commited on
Commit
ba17c5b
·
verified ·
1 Parent(s): d00e30a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -47
app.py CHANGED
@@ -4,38 +4,18 @@ import torch
4
  import cv2
5
  from PIL import Image
6
  from torchvision import transforms
7
- from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
8
 
9
  # Load U²-Net model
10
  model_path = "cloth_segmentation/networks/u2net.pth"
11
  model = U2NET(3, 1)
12
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
13
- state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
17
- def detect_design(image_np):
18
- """Detects the design on the dress using edge detection and adaptive thresholding."""
19
- gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
20
-
21
- # Use adaptive thresholding to segment the design
22
- adaptive_thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
23
- cv2.THRESH_BINARY_INV, 11, 2)
24
-
25
- # Detect edges using Canny
26
- edges = cv2.Canny(gray, 50, 150)
27
-
28
- # Combine both masks
29
- design_mask = cv2.bitwise_or(adaptive_thresh, edges)
30
-
31
- # Morphological operations to remove noise
32
- kernel = np.ones((3, 3), np.uint8)
33
- design_mask = cv2.morphologyEx(design_mask, cv2.MORPH_CLOSE, kernel)
34
-
35
- return design_mask
36
-
37
  def segment_dress(image_np):
38
- """Segment the dress using U²-Net"""
39
  transform_pipeline = transforms.Compose([
40
  transforms.ToTensor(),
41
  transforms.Resize((320, 320))
@@ -47,35 +27,38 @@ def segment_dress(image_np):
47
  with torch.no_grad():
48
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
49
 
50
- # Convert output to mask
51
  dress_mask = (output > 0.5).astype(np.uint8) * 255
52
  dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
53
 
54
- # Morphological operations for smoothness
55
- kernel = np.ones((5, 5), np.uint8)
56
- dress_mask = cv2.morphologyEx(dress_mask, cv2.MORPH_CLOSE, kernel)
57
-
58
  return dress_mask
59
 
60
- def recolor_dress(image_np, dress_mask, design_mask, target_color):
61
- """Change dress color while preserving designs"""
62
 
63
- img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
64
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
65
 
66
- # Ensure the design areas are NOT recolored
67
- recolor_mask = cv2.bitwise_and(dress_mask, cv2.bitwise_not(design_mask))
 
 
 
 
68
 
69
- # Apply color change only to the non-design dress areas
70
- blend_factor = 0.8
71
- img_lab[..., 1] = np.where(recolor_mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1])
72
- img_lab[..., 2] = np.where(recolor_mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
73
 
 
74
  img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
 
 
 
 
75
  return img_recolored
76
 
77
  def change_dress_color(image_path, color):
78
- """Change the dress color naturally while keeping designs intact."""
79
  if image_path is None:
80
  return None
81
 
@@ -88,19 +71,16 @@ def change_dress_color(image_path, color):
88
  if dress_mask is None:
89
  return img # No dress detected
90
 
91
- # Detect design on the dress
92
- design_mask = detect_design(img_np)
93
-
94
  # Convert the selected color to BGR
95
  color_map = {
96
  "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255),
97
  "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255),
98
  "White": (255, 255, 255), "Black": (0, 0, 0)
99
  }
100
- new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
101
-
102
- # Apply recoloring logic
103
- img_recolored = recolor_dress(img_np, dress_mask, design_mask, new_color_bgr)
104
 
105
  return Image.fromarray(img_recolored)
106
 
@@ -112,8 +92,8 @@ demo = gr.Interface(
112
  gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color")
113
  ],
114
  outputs=gr.Image(type="pil", label="Color Changed Dress"),
115
- title="Dress Color Changer",
116
- description="Upload an image of a dress and select a new color to change its appearance naturally while preserving designs."
117
  )
118
 
119
  if __name__ == "__main__":
 
4
  import cv2
5
  from PIL import Image
6
  from torchvision import transforms
7
+ from cloth_segmentation.networks.u2net import U2NET
8
 
9
  # Load U²-Net model
10
  model_path = "cloth_segmentation/networks/u2net.pth"
11
  model = U2NET(3, 1)
12
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
13
+ state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  def segment_dress(image_np):
18
+ """Segment dress using U²-Net"""
19
  transform_pipeline = transforms.Compose([
20
  transforms.ToTensor(),
21
  transforms.Resize((320, 320))
 
27
  with torch.no_grad():
28
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
29
 
 
30
  dress_mask = (output > 0.5).astype(np.uint8) * 255
31
  dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
32
 
 
 
 
 
33
  return dress_mask
34
 
35
+ def recolor_dress(image_np, dress_mask, target_color):
36
+ """Change dress color naturally while keeping textures intact"""
37
 
38
+ # Convert target color to LAB
39
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
40
 
41
+ # Convert image to LAB for better color control
42
+ img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
43
+
44
+ # Compute mean LAB values of dress pixels
45
+ dress_pixels = img_lab[dress_mask > 0]
46
+ mean_L, mean_A, mean_B = dress_pixels[:, 0].mean(), dress_pixels[:, 1].mean(), dress_pixels[:, 2].mean()
47
 
48
+ # Compute new color adjustment
49
+ img_lab[..., 1] = np.where(dress_mask > 128, img_lab[..., 1] - mean_A + target_color_lab[1], img_lab[..., 1])
50
+ img_lab[..., 2] = np.where(dress_mask > 128, img_lab[..., 2] - mean_B + target_color_lab[2], img_lab[..., 2])
 
51
 
52
+ # Convert back to RGB
53
  img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
54
+
55
+ # Smooth edges for natural blending
56
+ img_recolored = cv2.seamlessClone(img_recolored, image_np, dress_mask, (image_np.shape[1]//2, image_np.shape[0]//2), cv2.NORMAL_CLONE)
57
+
58
  return img_recolored
59
 
60
  def change_dress_color(image_path, color):
61
+ """Main function to change dress color naturally"""
62
  if image_path is None:
63
  return None
64
 
 
71
  if dress_mask is None:
72
  return img # No dress detected
73
 
 
 
 
74
  # Convert the selected color to BGR
75
  color_map = {
76
  "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255),
77
  "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255),
78
  "White": (255, 255, 255), "Black": (0, 0, 0)
79
  }
80
+ new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8)
81
+
82
+ # Apply recoloring with blending
83
+ img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr)
84
 
85
  return Image.fromarray(img_recolored)
86
 
 
92
  gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color")
93
  ],
94
  outputs=gr.Image(type="pil", label="Color Changed Dress"),
95
+ title="Realistic Dress Color Changer",
96
+ description="Upload an image of a dress and select a new color. The AI will change the dress color naturally while keeping the fabric texture."
97
  )
98
 
99
  if __name__ == "__main__":