Spaces:
Running
Running
Upload 44 files
Browse files- .gitattributes +25 -0
- cloth_segmentation/LICENSE +21 -0
- cloth_segmentation/README.md +56 -0
- cloth_segmentation/assets/000.png +3 -0
- cloth_segmentation/assets/001.png +3 -0
- cloth_segmentation/assets/002.png +3 -0
- cloth_segmentation/assets/003.png +3 -0
- cloth_segmentation/assets/004.png +3 -0
- cloth_segmentation/assets/005.png +3 -0
- cloth_segmentation/assets/006.png +3 -0
- cloth_segmentation/assets/007.png +3 -0
- cloth_segmentation/assets/008.png +3 -0
- cloth_segmentation/assets/009.png +3 -0
- cloth_segmentation/assets/010.png +3 -0
- cloth_segmentation/assets/011.png +3 -0
- cloth_segmentation/assets/012.png +3 -0
- cloth_segmentation/assets/013.png +3 -0
- cloth_segmentation/assets/014.png +3 -0
- cloth_segmentation/assets/015.png +3 -0
- cloth_segmentation/assets/016.png +3 -0
- cloth_segmentation/assets/017.png +3 -0
- cloth_segmentation/assets/018.png +3 -0
- cloth_segmentation/assets/019.png +3 -0
- cloth_segmentation/assets/020.png +3 -0
- cloth_segmentation/assets/021.png +3 -0
- cloth_segmentation/assets/022.png +3 -0
- cloth_segmentation/assets/023.png +3 -0
- cloth_segmentation/assets/024.png +3 -0
- cloth_segmentation/assets/label_descriptions.json +842 -0
- cloth_segmentation/data/aligned_dataset.py +169 -0
- cloth_segmentation/data/base_data_loader.py +10 -0
- cloth_segmentation/data/base_dataset.py +189 -0
- cloth_segmentation/data/custom_dataset_data_loader.py +71 -0
- cloth_segmentation/data/data_loader.py +7 -0
- cloth_segmentation/data/image_folder.py +81 -0
- cloth_segmentation/infer.py +86 -0
- cloth_segmentation/model_surgery.py +51 -0
- cloth_segmentation/networks/__init__.py +1 -0
- cloth_segmentation/networks/u2net.py +565 -0
- cloth_segmentation/options/base_options.py +38 -0
- cloth_segmentation/samples.md +33 -0
- cloth_segmentation/train.py +190 -0
- cloth_segmentation/utils/distributed.py +47 -0
- cloth_segmentation/utils/saving_utils.py +45 -0
- cloth_segmentation/utils/tensorboard_utils.py +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,28 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cloth_segmentation/assets/000.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
cloth_segmentation/assets/001.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
cloth_segmentation/assets/002.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
cloth_segmentation/assets/003.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
cloth_segmentation/assets/004.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
cloth_segmentation/assets/005.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
cloth_segmentation/assets/006.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
cloth_segmentation/assets/007.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
cloth_segmentation/assets/008.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
cloth_segmentation/assets/009.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
cloth_segmentation/assets/010.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
cloth_segmentation/assets/011.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
cloth_segmentation/assets/012.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
cloth_segmentation/assets/013.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
cloth_segmentation/assets/014.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
cloth_segmentation/assets/015.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
cloth_segmentation/assets/016.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
cloth_segmentation/assets/017.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
cloth_segmentation/assets/018.png filter=lfs diff=lfs merge=lfs -text
|
55 |
+
cloth_segmentation/assets/019.png filter=lfs diff=lfs merge=lfs -text
|
56 |
+
cloth_segmentation/assets/020.png filter=lfs diff=lfs merge=lfs -text
|
57 |
+
cloth_segmentation/assets/021.png filter=lfs diff=lfs merge=lfs -text
|
58 |
+
cloth_segmentation/assets/022.png filter=lfs diff=lfs merge=lfs -text
|
59 |
+
cloth_segmentation/assets/023.png filter=lfs diff=lfs merge=lfs -text
|
60 |
+
cloth_segmentation/assets/024.png filter=lfs diff=lfs merge=lfs -text
|
cloth_segmentation/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Levin Dabhi
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
cloth_segmentation/README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Clothes Segmentation using U2NET #
|
2 |
+
|
3 |
+

|
4 |
+
[](https://opensource.org/licenses/MIT)
|
5 |
+
[](https://colab.research.google.com/drive/1EhEy3uQh-5oOSagUotVOJAf8m7Vqn0D6?usp=sharing)
|
6 |
+
|
7 |
+
This repo contains training code, inference code and pre-trained model for Cloths Parsing from human portrait.</br>
|
8 |
+
Here clothes are parsed into 3 category: Upper body(red), Lower body(green) and Full body(yellow)
|
9 |
+
|
10 |
+

|
11 |
+

|
12 |
+

|
13 |
+
|
14 |
+
This model works well with any background and almost all poses. For more samples visit [samples.md](samples.md)
|
15 |
+
|
16 |
+
# Techinal details
|
17 |
+
|
18 |
+
* **U2NET** : This project uses an amazing [U2NET](https://arxiv.org/abs/2005.09007) as a deep learning model. Instead of having 1 channel output from u2net for typical salient object detection task it outputs 4 channels each respresting upper body cloth, lower body cloth, fully body cloth and background. Only categorical cross-entropy loss is used for a given version of the checkpoint.
|
19 |
+
|
20 |
+
* **Dataset** : U2net is trained on 45k images [iMaterialist (Fashion) 2019 at FGVC6](https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/data) dataset. To reduce complexity, I have clubbed the original 42 categories from dataset labels into 3 categories (upper body, lower body and full body). All images are resized into square `¯\_(ツ)_/¯` 768 x 768 px for training. (This experiment was conducted with 768 px but around 384 px will work fine too if one is retraining on another dataset).
|
21 |
+
|
22 |
+
# Training
|
23 |
+
|
24 |
+
- For training this project requires,
|
25 |
+
<ul>
|
26 |
+
<ul>
|
27 |
+
<li> PyTorch > 1.3.0</li>
|
28 |
+
<li> tensorboardX</li>
|
29 |
+
<li> gdown</li>
|
30 |
+
</ul>
|
31 |
+
</ul>
|
32 |
+
|
33 |
+
- Download dataset from this [link](https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/data), extract all items.
|
34 |
+
- Set path of `train` folder which contains training images and `train.csv` which is label csv file in `options/base_options.py`
|
35 |
+
- To port original u2net of all layer except last layer please run `python setup_model_weights.py` and it will generate weights after model surgey in `prev_checkpoints` folder.
|
36 |
+
- You can explore various options in `options/base_options.py` like checkpoint saving folder, logs folder etc.
|
37 |
+
- For single gpu set `distributed = False` in `options/base_options.py`, for multi gpu set it to `True`.
|
38 |
+
- For single gpu run `python train.py`
|
39 |
+
- For multi gpu run <br>
|
40 |
+
`python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 --use_env train.py` <br>
|
41 |
+
Here command is for single node, 4 gpu. Tested only for single node.
|
42 |
+
- You can watch loss graphs and samples in tensorboard by running tensorboard command in log folder.
|
43 |
+
|
44 |
+
|
45 |
+
# Testing/Inference
|
46 |
+
- Download pretrained model from this [link](https://drive.google.com/file/d/1mhF3yqd7R-Uje092eypktNl-RoZNuiCJ/view?usp=sharing)(165 MB) in `trained_checkpoint` folder.
|
47 |
+
- Put input images in `input_images` folder
|
48 |
+
- Run `python infer.py` for inference.
|
49 |
+
- Output will be saved in `output_images`
|
50 |
+
### OR
|
51 |
+
- Inference in colab from here [](https://colab.research.google.com/drive/1EhEy3uQh-5oOSagUotVOJAf8m7Vqn0D6?usp=sharing)
|
52 |
+
|
53 |
+
# Acknowledgements
|
54 |
+
- U2net model is from original [u2net repo](https://github.com/xuebinqin/U-2-Net). Thanks to Xuebin Qin for amazing repo.
|
55 |
+
- Complete repo follows structure of [Pix2pixHD repo](https://github.com/NVIDIA/pix2pixHD)
|
56 |
+
|
cloth_segmentation/assets/000.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/001.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/002.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/003.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/004.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/005.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/006.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/007.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/008.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/009.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/010.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/011.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/012.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/013.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/014.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/015.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/016.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/017.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/018.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/019.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/020.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/021.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/022.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/023.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/024.png
ADDED
![]() |
Git LFS Details
|
cloth_segmentation/assets/label_descriptions.json
ADDED
@@ -0,0 +1,842 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"info": {
|
3 |
+
"year": 2019,
|
4 |
+
"version": "1.0",
|
5 |
+
"description": "The 2019 FGVC^6 iMaterialist Competition - Fashion track dataset.",
|
6 |
+
"contributor": "iMaterialist Fashion Competition group",
|
7 |
+
"url": "https://github.com/visipedia/imat_comp",
|
8 |
+
"date_created": "2019-04-19 12:38:27.493919"
|
9 |
+
},
|
10 |
+
"categories": [
|
11 |
+
{
|
12 |
+
"id": 0,
|
13 |
+
"name": "shirt, blouse",
|
14 |
+
"supercategory": "upperbody",
|
15 |
+
"level": 2
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"id": 1,
|
19 |
+
"name": "top, t-shirt, sweatshirt",
|
20 |
+
"supercategory": "upperbody",
|
21 |
+
"level": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"id": 2,
|
25 |
+
"name": "sweater",
|
26 |
+
"supercategory": "upperbody",
|
27 |
+
"level": 2
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"id": 3,
|
31 |
+
"name": "cardigan",
|
32 |
+
"supercategory": "upperbody",
|
33 |
+
"level": 2
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"id": 4,
|
37 |
+
"name": "jacket",
|
38 |
+
"supercategory": "upperbody",
|
39 |
+
"level": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"id": 5,
|
43 |
+
"name": "vest",
|
44 |
+
"supercategory": "upperbody",
|
45 |
+
"level": 2
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"id": 6,
|
49 |
+
"name": "pants",
|
50 |
+
"supercategory": "lowerbody",
|
51 |
+
"level": 2
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"id": 7,
|
55 |
+
"name": "shorts",
|
56 |
+
"supercategory": "lowerbody",
|
57 |
+
"level": 2
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"id": 8,
|
61 |
+
"name": "skirt",
|
62 |
+
"supercategory": "lowerbody",
|
63 |
+
"level": 2
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"id": 9,
|
67 |
+
"name": "coat",
|
68 |
+
"supercategory": "wholebody",
|
69 |
+
"level": 2
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"id": 10,
|
73 |
+
"name": "dress",
|
74 |
+
"supercategory": "wholebody",
|
75 |
+
"level": 2
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"id": 11,
|
79 |
+
"name": "jumpsuit",
|
80 |
+
"supercategory": "wholebody",
|
81 |
+
"level": 2
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"id": 12,
|
85 |
+
"name": "cape",
|
86 |
+
"supercategory": "wholebody",
|
87 |
+
"level": 2
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"id": 13,
|
91 |
+
"name": "glasses",
|
92 |
+
"supercategory": "head",
|
93 |
+
"level": 2
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"id": 14,
|
97 |
+
"name": "hat",
|
98 |
+
"supercategory": "head",
|
99 |
+
"level": 2
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"id": 15,
|
103 |
+
"name": "headband, head covering, hair accessory",
|
104 |
+
"supercategory": "head",
|
105 |
+
"level": 2
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"id": 16,
|
109 |
+
"name": "tie",
|
110 |
+
"supercategory": "neck",
|
111 |
+
"level": 2
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"id": 17,
|
115 |
+
"name": "glove",
|
116 |
+
"supercategory": "arms and hands",
|
117 |
+
"level": 2
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"id": 18,
|
121 |
+
"name": "watch",
|
122 |
+
"supercategory": "arms and hands",
|
123 |
+
"level": 2
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"id": 19,
|
127 |
+
"name": "belt",
|
128 |
+
"supercategory": "waist",
|
129 |
+
"level": 2
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"id": 20,
|
133 |
+
"name": "leg warmer",
|
134 |
+
"supercategory": "legs and feet",
|
135 |
+
"level": 2
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"id": 21,
|
139 |
+
"name": "tights, stockings",
|
140 |
+
"supercategory": "legs and feet",
|
141 |
+
"level": 2
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"id": 22,
|
145 |
+
"name": "sock",
|
146 |
+
"supercategory": "legs and feet",
|
147 |
+
"level": 2
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"id": 23,
|
151 |
+
"name": "shoe",
|
152 |
+
"supercategory": "legs and feet",
|
153 |
+
"level": 2
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"id": 24,
|
157 |
+
"name": "bag, wallet",
|
158 |
+
"supercategory": "others",
|
159 |
+
"level": 2
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"id": 25,
|
163 |
+
"name": "scarf",
|
164 |
+
"supercategory": "others",
|
165 |
+
"level": 2
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"id": 26,
|
169 |
+
"name": "umbrella",
|
170 |
+
"supercategory": "others",
|
171 |
+
"level": 2
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"id": 27,
|
175 |
+
"name": "hood",
|
176 |
+
"supercategory": "garment parts",
|
177 |
+
"level": 2
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"id": 28,
|
181 |
+
"name": "collar",
|
182 |
+
"supercategory": "garment parts",
|
183 |
+
"level": 2
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"id": 29,
|
187 |
+
"name": "lapel",
|
188 |
+
"supercategory": "garment parts",
|
189 |
+
"level": 2
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"id": 30,
|
193 |
+
"name": "epaulette",
|
194 |
+
"supercategory": "garment parts",
|
195 |
+
"level": 2
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"id": 31,
|
199 |
+
"name": "sleeve",
|
200 |
+
"supercategory": "garment parts",
|
201 |
+
"level": 2
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"id": 32,
|
205 |
+
"name": "pocket",
|
206 |
+
"supercategory": "garment parts",
|
207 |
+
"level": 2
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"id": 33,
|
211 |
+
"name": "neckline",
|
212 |
+
"supercategory": "garment parts",
|
213 |
+
"level": 2
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"id": 34,
|
217 |
+
"name": "buckle",
|
218 |
+
"supercategory": "closures",
|
219 |
+
"level": 2
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"id": 35,
|
223 |
+
"name": "zipper",
|
224 |
+
"supercategory": "closures",
|
225 |
+
"level": 2
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"id": 36,
|
229 |
+
"name": "applique",
|
230 |
+
"supercategory": "decorations",
|
231 |
+
"level": 2
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"id": 37,
|
235 |
+
"name": "bead",
|
236 |
+
"supercategory": "decorations",
|
237 |
+
"level": 2
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"id": 38,
|
241 |
+
"name": "bow",
|
242 |
+
"supercategory": "decorations",
|
243 |
+
"level": 2
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"id": 39,
|
247 |
+
"name": "flower",
|
248 |
+
"supercategory": "decorations",
|
249 |
+
"level": 2
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"id": 40,
|
253 |
+
"name": "fringe",
|
254 |
+
"supercategory": "decorations",
|
255 |
+
"level": 2
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"id": 41,
|
259 |
+
"name": "ribbon",
|
260 |
+
"supercategory": "decorations",
|
261 |
+
"level": 2
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"id": 42,
|
265 |
+
"name": "rivet",
|
266 |
+
"supercategory": "decorations",
|
267 |
+
"level": 2
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"id": 43,
|
271 |
+
"name": "ruffle",
|
272 |
+
"supercategory": "decorations",
|
273 |
+
"level": 2
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"id": 44,
|
277 |
+
"name": "sequin",
|
278 |
+
"supercategory": "decorations",
|
279 |
+
"level": 2
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"id": 45,
|
283 |
+
"name": "tassel",
|
284 |
+
"supercategory": "decorations",
|
285 |
+
"level": 2
|
286 |
+
}
|
287 |
+
],
|
288 |
+
"attributes": [
|
289 |
+
{
|
290 |
+
"id": 0,
|
291 |
+
"name": "above-the-hip (length)",
|
292 |
+
"supercategory": "length",
|
293 |
+
"level": 1
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"id": 1,
|
297 |
+
"name": "hip (length)",
|
298 |
+
"supercategory": "length",
|
299 |
+
"level": 1
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"id": 2,
|
303 |
+
"name": "micro (length)",
|
304 |
+
"supercategory": "length",
|
305 |
+
"level": 1
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"id": 3,
|
309 |
+
"name": "mini (length)",
|
310 |
+
"supercategory": "length",
|
311 |
+
"level": 1
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"id": 4,
|
315 |
+
"name": "above-the-knee (length)",
|
316 |
+
"supercategory": "length",
|
317 |
+
"level": 1
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"id": 5,
|
321 |
+
"name": "knee (length)",
|
322 |
+
"supercategory": "length",
|
323 |
+
"level": 1
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"id": 6,
|
327 |
+
"name": "below the knee (length)",
|
328 |
+
"supercategory": "length",
|
329 |
+
"level": 1
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"id": 7,
|
333 |
+
"name": "midi",
|
334 |
+
"supercategory": "length",
|
335 |
+
"level": 1
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"id": 8,
|
339 |
+
"name": "maxi (length)",
|
340 |
+
"supercategory": "length",
|
341 |
+
"level": 1
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"id": 9,
|
345 |
+
"name": "floor (length)",
|
346 |
+
"supercategory": "length",
|
347 |
+
"level": 1
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"id": 10,
|
351 |
+
"name": "single breasted",
|
352 |
+
"supercategory": "opening type",
|
353 |
+
"level": 1
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"id": 11,
|
357 |
+
"name": "double breasted",
|
358 |
+
"supercategory": "opening type",
|
359 |
+
"level": 1
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"id": 12,
|
363 |
+
"name": "lace up",
|
364 |
+
"supercategory": "opening type",
|
365 |
+
"level": 1
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"id": 13,
|
369 |
+
"name": "wrapping",
|
370 |
+
"supercategory": "opening type",
|
371 |
+
"level": 1
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"id": 14,
|
375 |
+
"name": "zip-up",
|
376 |
+
"supercategory": "opening type",
|
377 |
+
"level": 1
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"id": 15,
|
381 |
+
"name": "fly (opening)",
|
382 |
+
"supercategory": "opening type",
|
383 |
+
"level": 1
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"id": 16,
|
387 |
+
"name": "buckled (opening)",
|
388 |
+
"supercategory": "opening type",
|
389 |
+
"level": 1
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"id": 17,
|
393 |
+
"name": "toggled (opening)",
|
394 |
+
"supercategory": "opening type",
|
395 |
+
"level": 1
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"id": 18,
|
399 |
+
"name": "no opening",
|
400 |
+
"supercategory": "opening type",
|
401 |
+
"level": 1
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"id": 19,
|
405 |
+
"name": "asymmetrical",
|
406 |
+
"supercategory": "silhouette",
|
407 |
+
"level": 1
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"id": 20,
|
411 |
+
"name": "symmetrical",
|
412 |
+
"supercategory": "silhouette",
|
413 |
+
"level": 1
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"id": 21,
|
417 |
+
"name": "peplum",
|
418 |
+
"supercategory": "silhouette",
|
419 |
+
"level": 1
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"id": 22,
|
423 |
+
"name": "circle",
|
424 |
+
"supercategory": "silhouette",
|
425 |
+
"level": 1
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"id": 23,
|
429 |
+
"name": "flare",
|
430 |
+
"supercategory": "silhouette",
|
431 |
+
"level": 1
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"id": 24,
|
435 |
+
"name": "fit and flare",
|
436 |
+
"supercategory": "silhouette",
|
437 |
+
"level": 1
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"id": 25,
|
441 |
+
"name": "trumpet",
|
442 |
+
"supercategory": "silhouette",
|
443 |
+
"level": 1
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"id": 26,
|
447 |
+
"name": "mermaid",
|
448 |
+
"supercategory": "silhouette",
|
449 |
+
"level": 1
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"id": 27,
|
453 |
+
"name": "balloon",
|
454 |
+
"supercategory": "silhouette",
|
455 |
+
"level": 1
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"id": 28,
|
459 |
+
"name": "bell",
|
460 |
+
"supercategory": "silhouette",
|
461 |
+
"level": 1
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"id": 29,
|
465 |
+
"name": "bell bottom",
|
466 |
+
"supercategory": "silhouette",
|
467 |
+
"level": 1
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"id": 30,
|
471 |
+
"name": "bootcut",
|
472 |
+
"supercategory": "silhouette",
|
473 |
+
"level": 1
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"id": 31,
|
477 |
+
"name": "peg",
|
478 |
+
"supercategory": "silhouette",
|
479 |
+
"level": 1
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"id": 32,
|
483 |
+
"name": "pencil",
|
484 |
+
"supercategory": "silhouette",
|
485 |
+
"level": 1
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"id": 33,
|
489 |
+
"name": "straight",
|
490 |
+
"supercategory": "silhouette",
|
491 |
+
"level": 1
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"id": 34,
|
495 |
+
"name": "a-line",
|
496 |
+
"supercategory": "silhouette",
|
497 |
+
"level": 1
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"id": 35,
|
501 |
+
"name": "tent",
|
502 |
+
"supercategory": "silhouette",
|
503 |
+
"level": 1
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"id": 36,
|
507 |
+
"name": "baggy",
|
508 |
+
"supercategory": "silhouette",
|
509 |
+
"level": 1
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"id": 37,
|
513 |
+
"name": "wide leg",
|
514 |
+
"supercategory": "silhouette",
|
515 |
+
"level": 1
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"id": 38,
|
519 |
+
"name": "high low",
|
520 |
+
"supercategory": "silhouette",
|
521 |
+
"level": 1
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"id": 39,
|
525 |
+
"name": "curved (fit)",
|
526 |
+
"supercategory": "silhouette",
|
527 |
+
"level": 1
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"id": 40,
|
531 |
+
"name": "tight (fit)",
|
532 |
+
"supercategory": "silhouette",
|
533 |
+
"level": 1
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"id": 41,
|
537 |
+
"name": "regular (fit)",
|
538 |
+
"supercategory": "silhouette",
|
539 |
+
"level": 1
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"id": 42,
|
543 |
+
"name": "loose (fit)",
|
544 |
+
"supercategory": "silhouette",
|
545 |
+
"level": 1
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"id": 43,
|
549 |
+
"name": "oversized",
|
550 |
+
"supercategory": "silhouette",
|
551 |
+
"level": 1
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"id": 44,
|
555 |
+
"name": "burnout",
|
556 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
557 |
+
"level": 1
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"id": 45,
|
561 |
+
"name": "distressed",
|
562 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
563 |
+
"level": 1
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"id": 46,
|
567 |
+
"name": "washed",
|
568 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
569 |
+
"level": 1
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"id": 47,
|
573 |
+
"name": "embossed",
|
574 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
575 |
+
"level": 1
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"id": 48,
|
579 |
+
"name": "frayed",
|
580 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
581 |
+
"level": 1
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"id": 49,
|
585 |
+
"name": "printed",
|
586 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
587 |
+
"level": 1
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"id": 50,
|
591 |
+
"name": "ruched",
|
592 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
593 |
+
"level": 1
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"id": 51,
|
597 |
+
"name": "quilted",
|
598 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
599 |
+
"level": 1
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"id": 52,
|
603 |
+
"name": "pleat",
|
604 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
605 |
+
"level": 1
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"id": 53,
|
609 |
+
"name": "gathering",
|
610 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
611 |
+
"level": 1
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"id": 54,
|
615 |
+
"name": "smocking",
|
616 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
617 |
+
"level": 1
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"id": 55,
|
621 |
+
"name": "tiered",
|
622 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
623 |
+
"level": 1
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"id": 56,
|
627 |
+
"name": "cutout",
|
628 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
629 |
+
"level": 1
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"id": 57,
|
633 |
+
"name": "slit",
|
634 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
635 |
+
"level": 1
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"id": 58,
|
639 |
+
"name": "perforated",
|
640 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
641 |
+
"level": 1
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"id": 59,
|
645 |
+
"name": "lining",
|
646 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
647 |
+
"level": 1
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"id": 60,
|
651 |
+
"name": "no special manufacturing technique",
|
652 |
+
"supercategory": "textile finishing, manufacturing techniques",
|
653 |
+
"level": 1
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"id": 61,
|
657 |
+
"name": "plain (pattern)",
|
658 |
+
"supercategory": "textile pattern",
|
659 |
+
"level": 1
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"id": 62,
|
663 |
+
"name": "abstract",
|
664 |
+
"supercategory": "textile pattern",
|
665 |
+
"level": 1
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"id": 63,
|
669 |
+
"name": "cartoon",
|
670 |
+
"supercategory": "textile pattern",
|
671 |
+
"level": 1
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"id": 64,
|
675 |
+
"name": "letters, numbers",
|
676 |
+
"supercategory": "textile pattern",
|
677 |
+
"level": 1
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"id": 65,
|
681 |
+
"name": "camouflage",
|
682 |
+
"supercategory": "textile pattern",
|
683 |
+
"level": 1
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"id": 66,
|
687 |
+
"name": "check",
|
688 |
+
"supercategory": "textile pattern",
|
689 |
+
"level": 1
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"id": 67,
|
693 |
+
"name": "dot",
|
694 |
+
"supercategory": "textile pattern",
|
695 |
+
"level": 1
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"id": 68,
|
699 |
+
"name": "fair isle",
|
700 |
+
"supercategory": "textile pattern",
|
701 |
+
"level": 1
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"id": 69,
|
705 |
+
"name": "floral",
|
706 |
+
"supercategory": "textile pattern",
|
707 |
+
"level": 1
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"id": 70,
|
711 |
+
"name": "geometric",
|
712 |
+
"supercategory": "textile pattern",
|
713 |
+
"level": 1
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"id": 71,
|
717 |
+
"name": "paisley",
|
718 |
+
"supercategory": "textile pattern",
|
719 |
+
"level": 1
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"id": 72,
|
723 |
+
"name": "stripe",
|
724 |
+
"supercategory": "textile pattern",
|
725 |
+
"level": 1
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"id": 73,
|
729 |
+
"name": "houndstooth (pattern)",
|
730 |
+
"supercategory": "textile pattern",
|
731 |
+
"level": 1
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"id": 74,
|
735 |
+
"name": "herringbone (pattern)",
|
736 |
+
"supercategory": "textile pattern",
|
737 |
+
"level": 1
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"id": 75,
|
741 |
+
"name": "chevron",
|
742 |
+
"supercategory": "textile pattern",
|
743 |
+
"level": 1
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"id": 76,
|
747 |
+
"name": "argyle",
|
748 |
+
"supercategory": "textile pattern",
|
749 |
+
"level": 1
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"id": 77,
|
753 |
+
"name": "leopard",
|
754 |
+
"supercategory": "animal",
|
755 |
+
"level": 2
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"id": 78,
|
759 |
+
"name": "snakeskin (pattern)",
|
760 |
+
"supercategory": "animal",
|
761 |
+
"level": 2
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"id": 79,
|
765 |
+
"name": "cheetah",
|
766 |
+
"supercategory": "animal",
|
767 |
+
"level": 2
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"id": 80,
|
771 |
+
"name": "peacock",
|
772 |
+
"supercategory": "animal",
|
773 |
+
"level": 2
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"id": 81,
|
777 |
+
"name": "zebra",
|
778 |
+
"supercategory": "animal",
|
779 |
+
"level": 2
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"id": 82,
|
783 |
+
"name": "giraffe",
|
784 |
+
"supercategory": "animal",
|
785 |
+
"level": 2
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"id": 83,
|
789 |
+
"name": "toile de jouy",
|
790 |
+
"supercategory": "textile pattern",
|
791 |
+
"level": 1
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"id": 84,
|
795 |
+
"name": "plant",
|
796 |
+
"supercategory": "textile pattern",
|
797 |
+
"level": 1
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"id": 85,
|
801 |
+
"name": "empire waistline",
|
802 |
+
"supercategory": "waistline",
|
803 |
+
"level": 1
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"id": 86,
|
807 |
+
"name": "dropped waistline",
|
808 |
+
"supercategory": "waistline",
|
809 |
+
"level": 1
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"id": 87,
|
813 |
+
"name": "high waist",
|
814 |
+
"supercategory": "waistline",
|
815 |
+
"level": 1
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"id": 88,
|
819 |
+
"name": "normal waist",
|
820 |
+
"supercategory": "waistline",
|
821 |
+
"level": 1
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"id": 89,
|
825 |
+
"name": "low waist",
|
826 |
+
"supercategory": "waistline",
|
827 |
+
"level": 1
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"id": 90,
|
831 |
+
"name": "basque (wasitline)",
|
832 |
+
"supercategory": "waistline",
|
833 |
+
"level": 1
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"id": 91,
|
837 |
+
"name": "no waistline",
|
838 |
+
"supercategory": "waistline",
|
839 |
+
"level": 1
|
840 |
+
}
|
841 |
+
]
|
842 |
+
}
|
cloth_segmentation/data/aligned_dataset.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data.base_dataset import BaseDataset, Rescale_fixed, Normalize_image
|
2 |
+
from data.image_folder import make_dataset, make_dataset_test
|
3 |
+
|
4 |
+
import os
|
5 |
+
import cv2
|
6 |
+
import json
|
7 |
+
import itertools
|
8 |
+
import collections
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
import pandas as pd
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torchvision.transforms as transforms
|
17 |
+
|
18 |
+
|
19 |
+
class AlignedDataset(BaseDataset):
|
20 |
+
def initialize(self, opt):
|
21 |
+
self.opt = opt
|
22 |
+
self.image_dir = opt.image_folder
|
23 |
+
self.df_path = opt.df_path
|
24 |
+
self.width = opt.fine_width
|
25 |
+
self.height = opt.fine_height
|
26 |
+
|
27 |
+
# for rgb imgs
|
28 |
+
|
29 |
+
transforms_list = []
|
30 |
+
transforms_list += [transforms.ToTensor()]
|
31 |
+
transforms_list += [Normalize_image(opt.mean, opt.std)]
|
32 |
+
self.transform_rgb = transforms.Compose(transforms_list)
|
33 |
+
|
34 |
+
self.df = pd.read_csv(self.df_path)
|
35 |
+
self.image_info = collections.defaultdict(dict)
|
36 |
+
self.df["CategoryId"] = self.df.ClassId.apply(lambda x: str(x).split("_")[0])
|
37 |
+
temp_df = (
|
38 |
+
self.df.groupby("ImageId")["EncodedPixels", "CategoryId"]
|
39 |
+
.agg(lambda x: list(x))
|
40 |
+
.reset_index()
|
41 |
+
)
|
42 |
+
size_df = self.df.groupby("ImageId")["Height", "Width"].mean().reset_index()
|
43 |
+
temp_df = temp_df.merge(size_df, on="ImageId", how="left")
|
44 |
+
for index, row in tqdm(temp_df.iterrows(), total=len(temp_df)):
|
45 |
+
image_id = row["ImageId"]
|
46 |
+
image_path = os.path.join(self.image_dir, image_id)
|
47 |
+
self.image_info[index]["image_id"] = image_id
|
48 |
+
self.image_info[index]["image_path"] = image_path
|
49 |
+
self.image_info[index]["width"] = self.width
|
50 |
+
self.image_info[index]["height"] = self.height
|
51 |
+
self.image_info[index]["labels"] = row["CategoryId"]
|
52 |
+
self.image_info[index]["orig_height"] = row["Height"]
|
53 |
+
self.image_info[index]["orig_width"] = row["Width"]
|
54 |
+
self.image_info[index]["annotations"] = row["EncodedPixels"]
|
55 |
+
|
56 |
+
self.dataset_size = len(self.image_info)
|
57 |
+
|
58 |
+
def __getitem__(self, index):
|
59 |
+
# load images ad masks
|
60 |
+
idx = index
|
61 |
+
img_path = self.image_info[idx]["image_path"]
|
62 |
+
img = Image.open(img_path).convert("RGB")
|
63 |
+
img = img.resize((self.width, self.height), resample=Image.BICUBIC)
|
64 |
+
image_tensor = self.transform_rgb(img)
|
65 |
+
|
66 |
+
info = self.image_info[idx]
|
67 |
+
mask = np.zeros(
|
68 |
+
(len(info["annotations"]), self.width, self.height), dtype=np.uint8
|
69 |
+
)
|
70 |
+
labels = []
|
71 |
+
for m, (annotation, label) in enumerate(
|
72 |
+
zip(info["annotations"], info["labels"])
|
73 |
+
):
|
74 |
+
sub_mask = self.rle_decode(
|
75 |
+
annotation, (info["orig_height"], info["orig_width"])
|
76 |
+
)
|
77 |
+
sub_mask = Image.fromarray(sub_mask)
|
78 |
+
sub_mask = sub_mask.resize(
|
79 |
+
(self.width, self.height), resample=Image.BICUBIC
|
80 |
+
)
|
81 |
+
mask[m, :, :] = sub_mask
|
82 |
+
labels.append(int(label) + 1)
|
83 |
+
|
84 |
+
num_objs = len(labels)
|
85 |
+
boxes = []
|
86 |
+
new_labels = []
|
87 |
+
new_masks = []
|
88 |
+
|
89 |
+
for i in range(num_objs):
|
90 |
+
try:
|
91 |
+
pos = np.where(mask[i, :, :])
|
92 |
+
xmin = np.min(pos[1])
|
93 |
+
xmax = np.max(pos[1])
|
94 |
+
ymin = np.min(pos[0])
|
95 |
+
ymax = np.max(pos[0])
|
96 |
+
if abs(xmax - xmin) >= 20 and abs(ymax - ymin) >= 20:
|
97 |
+
boxes.append([xmin, ymin, xmax, ymax])
|
98 |
+
new_labels.append(labels[i])
|
99 |
+
new_masks.append(mask[i, :, :])
|
100 |
+
except ValueError:
|
101 |
+
continue
|
102 |
+
|
103 |
+
if len(new_labels) == 0:
|
104 |
+
boxes.append([0, 0, 20, 20])
|
105 |
+
new_labels.append(0)
|
106 |
+
new_masks.append(mask[0, :, :])
|
107 |
+
|
108 |
+
nmx = np.zeros((len(new_masks), self.width, self.height), dtype=np.uint8)
|
109 |
+
for i, n in enumerate(new_masks):
|
110 |
+
nmx[i, :, :] = n
|
111 |
+
|
112 |
+
boxes = torch.as_tensor(boxes, dtype=torch.float32)
|
113 |
+
labels = torch.as_tensor(new_labels, dtype=torch.int64)
|
114 |
+
masks = torch.as_tensor(nmx, dtype=torch.uint8)
|
115 |
+
|
116 |
+
final_label = np.zeros((self.width, self.height), dtype=np.uint8)
|
117 |
+
first_channel = np.zeros((self.width, self.height), dtype=np.uint8)
|
118 |
+
second_channel = np.zeros((self.width, self.height), dtype=np.uint8)
|
119 |
+
third_channel = np.zeros((self.width, self.height), dtype=np.uint8)
|
120 |
+
|
121 |
+
upperbody = [0, 1, 2, 3, 4, 5]
|
122 |
+
lowerbody = [6, 7, 8]
|
123 |
+
wholebody = [9, 10, 11, 12]
|
124 |
+
|
125 |
+
for i in range(len(labels)):
|
126 |
+
if labels[i] in upperbody:
|
127 |
+
first_channel += new_masks[i]
|
128 |
+
elif labels[i] in lowerbody:
|
129 |
+
second_channel += new_masks[i]
|
130 |
+
elif labels[i] in wholebody:
|
131 |
+
third_channel += new_masks[i]
|
132 |
+
|
133 |
+
first_channel = (first_channel > 0).astype("uint8")
|
134 |
+
second_channel = (second_channel > 0).astype("uint8")
|
135 |
+
third_channel = (third_channel > 0).astype("uint8")
|
136 |
+
|
137 |
+
final_label = first_channel + second_channel * 2 + third_channel * 3
|
138 |
+
conflict_mask = (final_label <= 3).astype("uint8")
|
139 |
+
final_label = (conflict_mask) * final_label + (1 - conflict_mask) * 1
|
140 |
+
target_tensor = torch.as_tensor(final_label, dtype=torch.int64)
|
141 |
+
|
142 |
+
return image_tensor, target_tensor
|
143 |
+
|
144 |
+
def __len__(self):
|
145 |
+
return len(self.image_info)
|
146 |
+
|
147 |
+
def name(self):
|
148 |
+
return "AlignedDataset"
|
149 |
+
|
150 |
+
def rle_decode(self, mask_rle, shape):
|
151 |
+
"""
|
152 |
+
mask_rle: run-length as string formated: [start0] [length0] [start1] [length1]... in 1d array
|
153 |
+
shape: (height,width) of array to return
|
154 |
+
Returns numpy array according to the shape, 1 - mask, 0 - background
|
155 |
+
"""
|
156 |
+
shape = (shape[1], shape[0])
|
157 |
+
s = mask_rle.split()
|
158 |
+
# gets starts & lengths 1d arrays
|
159 |
+
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0::2], s[1::2])]
|
160 |
+
starts -= 1
|
161 |
+
# gets ends 1d array
|
162 |
+
ends = starts + lengths
|
163 |
+
# creates blank mask image 1d array
|
164 |
+
img = np.zeros(shape[0] * shape[1], dtype=np.uint8)
|
165 |
+
# sets mark pixles
|
166 |
+
for lo, hi in zip(starts, ends):
|
167 |
+
img[lo:hi] = 1
|
168 |
+
# reshape as a 2d mask image
|
169 |
+
return img.reshape(shape).T # Needed to align to RLE direction
|
cloth_segmentation/data/base_data_loader.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class BaseDataLoader:
|
2 |
+
def __init__(self):
|
3 |
+
pass
|
4 |
+
|
5 |
+
def initialize(self, opt):
|
6 |
+
self.opt = opt
|
7 |
+
pass
|
8 |
+
|
9 |
+
def load_data():
|
10 |
+
return None
|
cloth_segmentation/data/base_dataset.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.data as data
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
|
11 |
+
|
12 |
+
class BaseDataset(data.Dataset):
|
13 |
+
def __init__(self):
|
14 |
+
super(BaseDataset, self).__init__()
|
15 |
+
|
16 |
+
def name(self):
|
17 |
+
return "BaseDataset"
|
18 |
+
|
19 |
+
def initialize(self, opt):
|
20 |
+
pass
|
21 |
+
|
22 |
+
|
23 |
+
class Rescale_fixed(object):
|
24 |
+
"""Rescale the input image into given size.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
(w,h) (tuple): output size or x (int) then resized will be done in (x,x).
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, output_size):
|
31 |
+
self.output_size = output_size
|
32 |
+
|
33 |
+
def __call__(self, image):
|
34 |
+
return image.resize(self.output_size, Image.BICUBIC)
|
35 |
+
|
36 |
+
|
37 |
+
class Rescale_custom(object):
|
38 |
+
"""Rescale the input image and target image into randomly selected size with lower bound of min_size arg.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
min_size (int): Minimum desired output size.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(self, min_size, max_size):
|
45 |
+
assert isinstance(min_size, (int, float))
|
46 |
+
self.min_size = min_size
|
47 |
+
self.max_size = max_size
|
48 |
+
|
49 |
+
def __call__(self, sample):
|
50 |
+
|
51 |
+
input_image, target_image = sample["input_image"], sample["target_image"]
|
52 |
+
|
53 |
+
assert input_image.size == target_image.size
|
54 |
+
w, h = input_image.size
|
55 |
+
|
56 |
+
# Randomly select size to resize
|
57 |
+
if min(self.max_size, h, w) > self.min_size:
|
58 |
+
self.output_size = np.random.randint(
|
59 |
+
self.min_size, min(self.max_size, h, w)
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
self.output_size = self.min_size
|
63 |
+
|
64 |
+
# calculate new size by keeping aspect ratio same
|
65 |
+
if h > w:
|
66 |
+
new_h, new_w = self.output_size * h / w, self.output_size
|
67 |
+
else:
|
68 |
+
new_h, new_w = self.output_size, self.output_size * w / h
|
69 |
+
|
70 |
+
new_w, new_h = int(new_w), int(new_h)
|
71 |
+
input_image = input_image.resize((new_w, new_h), Image.BICUBIC)
|
72 |
+
target_image = target_image.resize((new_w, new_h), Image.BICUBIC)
|
73 |
+
return {"input_image": input_image, "target_image": target_image}
|
74 |
+
|
75 |
+
|
76 |
+
class ToTensor(object):
|
77 |
+
"""Convert ndarrays in sample to Tensors."""
|
78 |
+
|
79 |
+
def __init__(self):
|
80 |
+
self.totensor = transforms.ToTensor()
|
81 |
+
|
82 |
+
def __call__(self, sample):
|
83 |
+
input_image, target_image = sample["input_image"], sample["target_image"]
|
84 |
+
|
85 |
+
return {
|
86 |
+
"input_image": self.totensor(input_image),
|
87 |
+
"target_image": self.totensor(target_image),
|
88 |
+
}
|
89 |
+
|
90 |
+
|
91 |
+
class RandomCrop_custom(object):
|
92 |
+
"""Crop randomly the image in a sample.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
output_size (tuple or int): Desired output size. If int, square crop
|
96 |
+
is made.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, output_size):
|
100 |
+
assert isinstance(output_size, (int, tuple))
|
101 |
+
if isinstance(output_size, int):
|
102 |
+
self.output_size = (output_size, output_size)
|
103 |
+
else:
|
104 |
+
assert len(output_size) == 2
|
105 |
+
self.output_size = output_size
|
106 |
+
|
107 |
+
self.randomcrop = transforms.RandomCrop(self.output_size)
|
108 |
+
|
109 |
+
def __call__(self, sample):
|
110 |
+
input_image, target_image = sample["input_image"], sample["target_image"]
|
111 |
+
cropped_imgs = self.randomcrop(torch.cat((input_image, target_image)))
|
112 |
+
|
113 |
+
return {
|
114 |
+
"input_image": cropped_imgs[
|
115 |
+
:3,
|
116 |
+
:,
|
117 |
+
],
|
118 |
+
"target_image": cropped_imgs[
|
119 |
+
3:,
|
120 |
+
:,
|
121 |
+
],
|
122 |
+
}
|
123 |
+
|
124 |
+
|
125 |
+
class Normalize_custom(object):
|
126 |
+
"""Normalize given dict into given mean and standard dev
|
127 |
+
|
128 |
+
Args:
|
129 |
+
mean (tuple or int): Desired mean to substract from dict's tensors
|
130 |
+
std (tuple or int): Desired std to divide from dict's tensors
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(self, mean, std):
|
134 |
+
assert isinstance(mean, (float, tuple))
|
135 |
+
if isinstance(mean, float):
|
136 |
+
self.mean = (mean, mean, mean)
|
137 |
+
else:
|
138 |
+
assert len(mean) == 3
|
139 |
+
self.mean = mean
|
140 |
+
|
141 |
+
if isinstance(std, float):
|
142 |
+
self.std = (std, std, std)
|
143 |
+
else:
|
144 |
+
assert len(std) == 3
|
145 |
+
self.std = std
|
146 |
+
|
147 |
+
self.normalize = transforms.Normalize(self.mean, self.std)
|
148 |
+
|
149 |
+
def __call__(self, sample):
|
150 |
+
input_image, target_image = sample["input_image"], sample["target_image"]
|
151 |
+
|
152 |
+
return {
|
153 |
+
"input_image": self.normalize(input_image),
|
154 |
+
"target_image": self.normalize(target_image),
|
155 |
+
}
|
156 |
+
|
157 |
+
|
158 |
+
class Normalize_image(object):
|
159 |
+
"""Normalize given tensor into given mean and standard dev
|
160 |
+
|
161 |
+
Args:
|
162 |
+
mean (float): Desired mean to substract from tensors
|
163 |
+
std (float): Desired std to divide from tensors
|
164 |
+
"""
|
165 |
+
|
166 |
+
def __init__(self, mean, std):
|
167 |
+
assert isinstance(mean, (float))
|
168 |
+
if isinstance(mean, float):
|
169 |
+
self.mean = mean
|
170 |
+
|
171 |
+
if isinstance(std, float):
|
172 |
+
self.std = std
|
173 |
+
|
174 |
+
self.normalize_1 = transforms.Normalize(self.mean, self.std)
|
175 |
+
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
|
176 |
+
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)
|
177 |
+
|
178 |
+
def __call__(self, image_tensor):
|
179 |
+
if image_tensor.shape[0] == 1:
|
180 |
+
return self.normalize_1(image_tensor)
|
181 |
+
|
182 |
+
elif image_tensor.shape[0] == 3:
|
183 |
+
return self.normalize_3(image_tensor)
|
184 |
+
|
185 |
+
elif image_tensor.shape[0] == 18:
|
186 |
+
return self.normalize_18(image_tensor)
|
187 |
+
|
188 |
+
else:
|
189 |
+
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
|
cloth_segmentation/data/custom_dataset_data_loader.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.utils.data
|
2 |
+
from data.base_data_loader import BaseDataLoader
|
3 |
+
|
4 |
+
|
5 |
+
def CreateDataset(opt):
|
6 |
+
dataset = None
|
7 |
+
from data.aligned_dataset import AlignedDataset
|
8 |
+
dataset = AlignedDataset()
|
9 |
+
|
10 |
+
print("dataset [%s] was created" % (dataset.name()))
|
11 |
+
dataset.initialize(opt)
|
12 |
+
return dataset
|
13 |
+
|
14 |
+
|
15 |
+
class CustomDatasetDataLoader(BaseDataLoader):
|
16 |
+
def name(self):
|
17 |
+
return 'CustomDatasetDataLoader'
|
18 |
+
|
19 |
+
def initialize(self, opt):
|
20 |
+
BaseDataLoader.initialize(self, opt)
|
21 |
+
self.dataset = CreateDataset(opt)
|
22 |
+
self.dataloader = torch.utils.data.DataLoader(
|
23 |
+
self.dataset,
|
24 |
+
batch_size=opt.batchSize,
|
25 |
+
sampler=data_sampler(self.dataset,
|
26 |
+
not opt.serial_batches, opt.distributed),
|
27 |
+
num_workers=int(opt.nThreads),
|
28 |
+
pin_memory=True)
|
29 |
+
|
30 |
+
def get_loader(self):
|
31 |
+
return self.dataloader
|
32 |
+
|
33 |
+
def __len__(self):
|
34 |
+
return min(len(self.dataset), self.opt.max_dataset_size)
|
35 |
+
|
36 |
+
|
37 |
+
def data_sampler(dataset, shuffle, distributed):
|
38 |
+
if distributed:
|
39 |
+
return torch.utils.data.distributed.DistributedSampler(dataset, shuffle=shuffle)
|
40 |
+
|
41 |
+
if shuffle:
|
42 |
+
return torch.utils.data.RandomSampler(dataset)
|
43 |
+
|
44 |
+
else:
|
45 |
+
return torch.utils.data.SequentialSampler(dataset)
|
46 |
+
|
47 |
+
|
48 |
+
def sample_data(loader):
|
49 |
+
while True:
|
50 |
+
for batch in loader:
|
51 |
+
yield batch
|
52 |
+
|
53 |
+
|
54 |
+
class CustomTestDataLoader(BaseDataLoader):
|
55 |
+
def name(self):
|
56 |
+
return 'CustomDatasetDataLoader'
|
57 |
+
|
58 |
+
def initialize(self, opt):
|
59 |
+
BaseDataLoader.initialize(self, opt)
|
60 |
+
self.dataset = CreateDataset(opt)
|
61 |
+
self.dataloader = torch.utils.data.DataLoader(
|
62 |
+
self.dataset,
|
63 |
+
batch_size=opt.batchSize,
|
64 |
+
num_workers=int(opt.nThreads),
|
65 |
+
pin_memory=True)
|
66 |
+
|
67 |
+
def get_loader(self):
|
68 |
+
return self.dataloader
|
69 |
+
|
70 |
+
def __len__(self):
|
71 |
+
return min(len(self.dataset), self.opt.max_dataset_size)
|
cloth_segmentation/data/data_loader.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def CreateDataLoader(opt):
|
2 |
+
from data.custom_dataset_data_loader import CustomDatasetDataLoader
|
3 |
+
|
4 |
+
data_loader = CustomDatasetDataLoader()
|
5 |
+
print(data_loader.name())
|
6 |
+
data_loader.initialize(opt)
|
7 |
+
return data_loader
|
cloth_segmentation/data/image_folder.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Code from
|
3 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py
|
4 |
+
# Modified the original code so that it also loads images from the current
|
5 |
+
# directory as well as the subdirectories
|
6 |
+
###############################################################################
|
7 |
+
import torch.utils.data as data
|
8 |
+
from PIL import Image
|
9 |
+
import os
|
10 |
+
|
11 |
+
IMG_EXTENSIONS = [
|
12 |
+
'.jpg', '.JPG', '.jpeg', '.JPEG',
|
13 |
+
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tiff'
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
def is_image_file(filename):
|
18 |
+
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
19 |
+
|
20 |
+
|
21 |
+
def make_dataset(dir):
|
22 |
+
images = []
|
23 |
+
assert os.path.isdir(dir), '%s is not a valid directory' % dir
|
24 |
+
|
25 |
+
f = dir.split('/')[-1].split('_')[-1]
|
26 |
+
print(dir, f)
|
27 |
+
dirs = os.listdir(dir)
|
28 |
+
for img in dirs:
|
29 |
+
path = os.path.join(dir, img)
|
30 |
+
images.append(path)
|
31 |
+
return images
|
32 |
+
|
33 |
+
|
34 |
+
def make_dataset_test(dir):
|
35 |
+
images = []
|
36 |
+
assert os.path.isdir(dir), '%s is not a valid directory' % dir
|
37 |
+
|
38 |
+
f = dir.split('/')[-1].split('_')[-1]
|
39 |
+
for i in range(len([name for name in os.listdir(dir) if os.path.isfile(os.path.join(dir, name))])):
|
40 |
+
if f == 'label' or f == 'labelref':
|
41 |
+
img = str(i) + '.png'
|
42 |
+
else:
|
43 |
+
img = str(i) + '.jpg'
|
44 |
+
path = os.path.join(dir, img)
|
45 |
+
# print(path)
|
46 |
+
images.append(path)
|
47 |
+
return images
|
48 |
+
|
49 |
+
|
50 |
+
def default_loader(path):
|
51 |
+
return Image.open(path).convert('RGB')
|
52 |
+
|
53 |
+
|
54 |
+
class ImageFolder(data.Dataset):
|
55 |
+
|
56 |
+
def __init__(self, root, transform=None, return_paths=False,
|
57 |
+
loader=default_loader):
|
58 |
+
imgs = make_dataset(root)
|
59 |
+
if len(imgs) == 0:
|
60 |
+
raise(RuntimeError("Found 0 images in: " + root + "\n"
|
61 |
+
"Supported image extensions are: " +
|
62 |
+
",".join(IMG_EXTENSIONS)))
|
63 |
+
|
64 |
+
self.root = root
|
65 |
+
self.imgs = imgs
|
66 |
+
self.transform = transform
|
67 |
+
self.return_paths = return_paths
|
68 |
+
self.loader = loader
|
69 |
+
|
70 |
+
def __getitem__(self, index):
|
71 |
+
path = self.imgs[index]
|
72 |
+
img = self.loader(path)
|
73 |
+
if self.transform is not None:
|
74 |
+
img = self.transform(img)
|
75 |
+
if self.return_paths:
|
76 |
+
return img, path
|
77 |
+
else:
|
78 |
+
return img
|
79 |
+
|
80 |
+
def __len__(self):
|
81 |
+
return len(self.imgs)
|
cloth_segmentation/infer.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from tqdm import tqdm
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
10 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torchvision.transforms as transforms
|
15 |
+
|
16 |
+
from data.base_dataset import Normalize_image
|
17 |
+
from utils.saving_utils import load_checkpoint_mgpu
|
18 |
+
|
19 |
+
from networks import U2NET
|
20 |
+
|
21 |
+
device = "cuda"
|
22 |
+
|
23 |
+
image_dir = "input_images"
|
24 |
+
result_dir = "output_images"
|
25 |
+
checkpoint_path = os.path.join("trained_checkpoint", "cloth_segm_u2net_latest.pth")
|
26 |
+
do_palette = True
|
27 |
+
|
28 |
+
|
29 |
+
def get_palette(num_cls):
|
30 |
+
"""Returns the color map for visualizing the segmentation mask.
|
31 |
+
Args:
|
32 |
+
num_cls: Number of classes
|
33 |
+
Returns:
|
34 |
+
The color map
|
35 |
+
"""
|
36 |
+
n = num_cls
|
37 |
+
palette = [0] * (n * 3)
|
38 |
+
for j in range(0, n):
|
39 |
+
lab = j
|
40 |
+
palette[j * 3 + 0] = 0
|
41 |
+
palette[j * 3 + 1] = 0
|
42 |
+
palette[j * 3 + 2] = 0
|
43 |
+
i = 0
|
44 |
+
while lab:
|
45 |
+
palette[j * 3 + 0] |= ((lab >> 0) & 1) << (7 - i)
|
46 |
+
palette[j * 3 + 1] |= ((lab >> 1) & 1) << (7 - i)
|
47 |
+
palette[j * 3 + 2] |= ((lab >> 2) & 1) << (7 - i)
|
48 |
+
i += 1
|
49 |
+
lab >>= 3
|
50 |
+
return palette
|
51 |
+
|
52 |
+
|
53 |
+
transforms_list = []
|
54 |
+
transforms_list += [transforms.ToTensor()]
|
55 |
+
transforms_list += [Normalize_image(0.5, 0.5)]
|
56 |
+
transform_rgb = transforms.Compose(transforms_list)
|
57 |
+
|
58 |
+
net = U2NET(in_ch=3, out_ch=4)
|
59 |
+
net = load_checkpoint_mgpu(net, checkpoint_path)
|
60 |
+
net = net.to(device)
|
61 |
+
net = net.eval()
|
62 |
+
|
63 |
+
palette = get_palette(4)
|
64 |
+
|
65 |
+
images_list = sorted(os.listdir(image_dir))
|
66 |
+
pbar = tqdm(total=len(images_list))
|
67 |
+
for image_name in images_list:
|
68 |
+
img = Image.open(os.path.join(image_dir, image_name)).convert("RGB")
|
69 |
+
image_tensor = transform_rgb(img)
|
70 |
+
image_tensor = torch.unsqueeze(image_tensor, 0)
|
71 |
+
|
72 |
+
output_tensor = net(image_tensor.to(device))
|
73 |
+
output_tensor = F.log_softmax(output_tensor[0], dim=1)
|
74 |
+
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
|
75 |
+
output_tensor = torch.squeeze(output_tensor, dim=0)
|
76 |
+
output_tensor = torch.squeeze(output_tensor, dim=0)
|
77 |
+
output_arr = output_tensor.cpu().numpy()
|
78 |
+
|
79 |
+
output_img = Image.fromarray(output_arr.astype("uint8"), mode="L")
|
80 |
+
if do_palette:
|
81 |
+
output_img.putpalette(palette)
|
82 |
+
output_img.save(os.path.join(result_dir, image_name[:-3] + "png"))
|
83 |
+
|
84 |
+
pbar.update(1)
|
85 |
+
|
86 |
+
pbar.close()
|
cloth_segmentation/model_surgery.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gdown
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from networks import U2NET
|
6 |
+
from utils.saving_utils import save_checkpoint
|
7 |
+
|
8 |
+
os.makedirs("prev_checkpoints", exist_ok=True)
|
9 |
+
gdown.download(
|
10 |
+
"https://drive.google.com/uc?id=1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ",
|
11 |
+
"./prev_checkpoints/u2net.pth",
|
12 |
+
quiet=False,
|
13 |
+
)
|
14 |
+
|
15 |
+
u_net = U2NET(in_ch=3, out_ch=4)
|
16 |
+
save_checkpoint(u_net, os.path.join("prev_checkpoints", "u2net_random.pth"))
|
17 |
+
|
18 |
+
# u2net.pth contains trained weights
|
19 |
+
trained_net_pth = os.path.join("prev_checkpoints", "u2net.pth")
|
20 |
+
# u2net_random.pth contains random weights
|
21 |
+
custom_net_pth = os.path.join("prev_checkpoints", "u2net_random.pth")
|
22 |
+
|
23 |
+
net_state_dict = torch.load(trained_net_pth)
|
24 |
+
count = 0
|
25 |
+
for k, v in net_state_dict.items():
|
26 |
+
count += 1
|
27 |
+
print("Total number of layers in trained model are: {}".format(count))
|
28 |
+
|
29 |
+
custom_state_dict = torch.load(custom_net_pth)
|
30 |
+
count = 0
|
31 |
+
for k, v in custom_state_dict.items():
|
32 |
+
count += 1
|
33 |
+
print("Total number of layers in trained model are: {}".format(count))
|
34 |
+
|
35 |
+
total_count = 0
|
36 |
+
update_count = 0
|
37 |
+
for k, v in net_state_dict.items():
|
38 |
+
total_count += 1
|
39 |
+
if custom_state_dict[k].shape == v.shape:
|
40 |
+
update_count += 1
|
41 |
+
custom_state_dict[k] = v
|
42 |
+
|
43 |
+
print(
|
44 |
+
"Out of {} layers in custom network, {} layers weights are recovered from trained model".format(
|
45 |
+
total_count, update_count
|
46 |
+
)
|
47 |
+
)
|
48 |
+
torch.save(
|
49 |
+
custom_state_dict, os.path.join("prev_checkpoints", "cloth_segm_unet_surgery.pth")
|
50 |
+
)
|
51 |
+
print("cloth_segm_unet_surgery.pth is generated in prev_checkpoints directory!")
|
cloth_segmentation/networks/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .u2net import U2NET
|
cloth_segmentation/networks/u2net.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class REBNCONV(nn.Module):
|
7 |
+
def __init__(self, in_ch=3, out_ch=3, dirate=1):
|
8 |
+
super(REBNCONV, self).__init__()
|
9 |
+
|
10 |
+
self.conv_s1 = nn.Conv2d(
|
11 |
+
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate
|
12 |
+
)
|
13 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
14 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
|
18 |
+
hx = x
|
19 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
20 |
+
|
21 |
+
return xout
|
22 |
+
|
23 |
+
|
24 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
25 |
+
def _upsample_like(src, tar):
|
26 |
+
|
27 |
+
src = F.upsample(src, size=tar.shape[2:], mode="bilinear")
|
28 |
+
|
29 |
+
return src
|
30 |
+
|
31 |
+
|
32 |
+
### RSU-7 ###
|
33 |
+
class RSU7(nn.Module): # UNet07DRES(nn.Module):
|
34 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
35 |
+
super(RSU7, self).__init__()
|
36 |
+
|
37 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
38 |
+
|
39 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
40 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
41 |
+
|
42 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
43 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
44 |
+
|
45 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
46 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
47 |
+
|
48 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
49 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
50 |
+
|
51 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
52 |
+
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
53 |
+
|
54 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
55 |
+
|
56 |
+
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
57 |
+
|
58 |
+
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
59 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
60 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
61 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
62 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
63 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
|
67 |
+
hx = x
|
68 |
+
hxin = self.rebnconvin(hx)
|
69 |
+
|
70 |
+
hx1 = self.rebnconv1(hxin)
|
71 |
+
hx = self.pool1(hx1)
|
72 |
+
|
73 |
+
hx2 = self.rebnconv2(hx)
|
74 |
+
hx = self.pool2(hx2)
|
75 |
+
|
76 |
+
hx3 = self.rebnconv3(hx)
|
77 |
+
hx = self.pool3(hx3)
|
78 |
+
|
79 |
+
hx4 = self.rebnconv4(hx)
|
80 |
+
hx = self.pool4(hx4)
|
81 |
+
|
82 |
+
hx5 = self.rebnconv5(hx)
|
83 |
+
hx = self.pool5(hx5)
|
84 |
+
|
85 |
+
hx6 = self.rebnconv6(hx)
|
86 |
+
|
87 |
+
hx7 = self.rebnconv7(hx6)
|
88 |
+
|
89 |
+
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
90 |
+
hx6dup = _upsample_like(hx6d, hx5)
|
91 |
+
|
92 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
93 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
94 |
+
|
95 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
96 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
97 |
+
|
98 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
99 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
100 |
+
|
101 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
102 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
103 |
+
|
104 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
105 |
+
|
106 |
+
"""
|
107 |
+
del hx1, hx2, hx3, hx4, hx5, hx6, hx7
|
108 |
+
del hx6d, hx5d, hx3d, hx2d
|
109 |
+
del hx2dup, hx3dup, hx4dup, hx5dup, hx6dup
|
110 |
+
"""
|
111 |
+
|
112 |
+
return hx1d + hxin
|
113 |
+
|
114 |
+
|
115 |
+
### RSU-6 ###
|
116 |
+
class RSU6(nn.Module): # UNet06DRES(nn.Module):
|
117 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
118 |
+
super(RSU6, self).__init__()
|
119 |
+
|
120 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
121 |
+
|
122 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
123 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
124 |
+
|
125 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
126 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
127 |
+
|
128 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
129 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
130 |
+
|
131 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
132 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
133 |
+
|
134 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
135 |
+
|
136 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
137 |
+
|
138 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
139 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
140 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
141 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
142 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
|
146 |
+
hx = x
|
147 |
+
|
148 |
+
hxin = self.rebnconvin(hx)
|
149 |
+
|
150 |
+
hx1 = self.rebnconv1(hxin)
|
151 |
+
hx = self.pool1(hx1)
|
152 |
+
|
153 |
+
hx2 = self.rebnconv2(hx)
|
154 |
+
hx = self.pool2(hx2)
|
155 |
+
|
156 |
+
hx3 = self.rebnconv3(hx)
|
157 |
+
hx = self.pool3(hx3)
|
158 |
+
|
159 |
+
hx4 = self.rebnconv4(hx)
|
160 |
+
hx = self.pool4(hx4)
|
161 |
+
|
162 |
+
hx5 = self.rebnconv5(hx)
|
163 |
+
|
164 |
+
hx6 = self.rebnconv6(hx5)
|
165 |
+
|
166 |
+
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
167 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
168 |
+
|
169 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
170 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
171 |
+
|
172 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
173 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
174 |
+
|
175 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
176 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
177 |
+
|
178 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
179 |
+
|
180 |
+
"""
|
181 |
+
del hx1, hx2, hx3, hx4, hx5, hx6
|
182 |
+
del hx5d, hx4d, hx3d, hx2d
|
183 |
+
del hx2dup, hx3dup, hx4dup, hx5dup
|
184 |
+
"""
|
185 |
+
|
186 |
+
return hx1d + hxin
|
187 |
+
|
188 |
+
|
189 |
+
### RSU-5 ###
|
190 |
+
class RSU5(nn.Module): # UNet05DRES(nn.Module):
|
191 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
192 |
+
super(RSU5, self).__init__()
|
193 |
+
|
194 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
195 |
+
|
196 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
197 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
198 |
+
|
199 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
200 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
201 |
+
|
202 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
203 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
204 |
+
|
205 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
206 |
+
|
207 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
208 |
+
|
209 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
210 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
211 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
212 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
213 |
+
|
214 |
+
def forward(self, x):
|
215 |
+
|
216 |
+
hx = x
|
217 |
+
|
218 |
+
hxin = self.rebnconvin(hx)
|
219 |
+
|
220 |
+
hx1 = self.rebnconv1(hxin)
|
221 |
+
hx = self.pool1(hx1)
|
222 |
+
|
223 |
+
hx2 = self.rebnconv2(hx)
|
224 |
+
hx = self.pool2(hx2)
|
225 |
+
|
226 |
+
hx3 = self.rebnconv3(hx)
|
227 |
+
hx = self.pool3(hx3)
|
228 |
+
|
229 |
+
hx4 = self.rebnconv4(hx)
|
230 |
+
|
231 |
+
hx5 = self.rebnconv5(hx4)
|
232 |
+
|
233 |
+
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
234 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
235 |
+
|
236 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
237 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
238 |
+
|
239 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
240 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
241 |
+
|
242 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
243 |
+
|
244 |
+
"""
|
245 |
+
del hx1, hx2, hx3, hx4, hx5
|
246 |
+
del hx4d, hx3d, hx2d
|
247 |
+
del hx2dup, hx3dup, hx4dup
|
248 |
+
"""
|
249 |
+
|
250 |
+
return hx1d + hxin
|
251 |
+
|
252 |
+
|
253 |
+
### RSU-4 ###
|
254 |
+
class RSU4(nn.Module): # UNet04DRES(nn.Module):
|
255 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
256 |
+
super(RSU4, self).__init__()
|
257 |
+
|
258 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
259 |
+
|
260 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
261 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
262 |
+
|
263 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
264 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
265 |
+
|
266 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
267 |
+
|
268 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
269 |
+
|
270 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
271 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
272 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
|
276 |
+
hx = x
|
277 |
+
|
278 |
+
hxin = self.rebnconvin(hx)
|
279 |
+
|
280 |
+
hx1 = self.rebnconv1(hxin)
|
281 |
+
hx = self.pool1(hx1)
|
282 |
+
|
283 |
+
hx2 = self.rebnconv2(hx)
|
284 |
+
hx = self.pool2(hx2)
|
285 |
+
|
286 |
+
hx3 = self.rebnconv3(hx)
|
287 |
+
|
288 |
+
hx4 = self.rebnconv4(hx3)
|
289 |
+
|
290 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
291 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
292 |
+
|
293 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
294 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
295 |
+
|
296 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
297 |
+
|
298 |
+
"""
|
299 |
+
del hx1, hx2, hx3, hx4
|
300 |
+
del hx3d, hx2d
|
301 |
+
del hx2dup, hx3dup
|
302 |
+
"""
|
303 |
+
|
304 |
+
return hx1d + hxin
|
305 |
+
|
306 |
+
|
307 |
+
### RSU-4F ###
|
308 |
+
class RSU4F(nn.Module): # UNet04FRES(nn.Module):
|
309 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
310 |
+
super(RSU4F, self).__init__()
|
311 |
+
|
312 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
313 |
+
|
314 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
315 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
316 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
317 |
+
|
318 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
319 |
+
|
320 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
321 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
322 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
|
326 |
+
hx = x
|
327 |
+
|
328 |
+
hxin = self.rebnconvin(hx)
|
329 |
+
|
330 |
+
hx1 = self.rebnconv1(hxin)
|
331 |
+
hx2 = self.rebnconv2(hx1)
|
332 |
+
hx3 = self.rebnconv3(hx2)
|
333 |
+
|
334 |
+
hx4 = self.rebnconv4(hx3)
|
335 |
+
|
336 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
337 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
338 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
339 |
+
|
340 |
+
"""
|
341 |
+
del hx1, hx2, hx3, hx4
|
342 |
+
del hx3d, hx2d
|
343 |
+
"""
|
344 |
+
|
345 |
+
return hx1d + hxin
|
346 |
+
|
347 |
+
|
348 |
+
##### U^2-Net ####
|
349 |
+
class U2NET(nn.Module):
|
350 |
+
def __init__(self, in_ch=3, out_ch=1):
|
351 |
+
super(U2NET, self).__init__()
|
352 |
+
|
353 |
+
self.stage1 = RSU7(in_ch, 32, 64)
|
354 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
355 |
+
|
356 |
+
self.stage2 = RSU6(64, 32, 128)
|
357 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
358 |
+
|
359 |
+
self.stage3 = RSU5(128, 64, 256)
|
360 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
361 |
+
|
362 |
+
self.stage4 = RSU4(256, 128, 512)
|
363 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
364 |
+
|
365 |
+
self.stage5 = RSU4F(512, 256, 512)
|
366 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
367 |
+
|
368 |
+
self.stage6 = RSU4F(512, 256, 512)
|
369 |
+
|
370 |
+
# decoder
|
371 |
+
self.stage5d = RSU4F(1024, 256, 512)
|
372 |
+
self.stage4d = RSU4(1024, 128, 256)
|
373 |
+
self.stage3d = RSU5(512, 64, 128)
|
374 |
+
self.stage2d = RSU6(256, 32, 64)
|
375 |
+
self.stage1d = RSU7(128, 16, 64)
|
376 |
+
|
377 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
378 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
379 |
+
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
380 |
+
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
381 |
+
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
382 |
+
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
383 |
+
|
384 |
+
self.outconv = nn.Conv2d(6 * out_ch, out_ch, 1)
|
385 |
+
|
386 |
+
def forward(self, x):
|
387 |
+
|
388 |
+
hx = x
|
389 |
+
|
390 |
+
# stage 1
|
391 |
+
hx1 = self.stage1(hx)
|
392 |
+
hx = self.pool12(hx1)
|
393 |
+
|
394 |
+
# stage 2
|
395 |
+
hx2 = self.stage2(hx)
|
396 |
+
hx = self.pool23(hx2)
|
397 |
+
|
398 |
+
# stage 3
|
399 |
+
hx3 = self.stage3(hx)
|
400 |
+
hx = self.pool34(hx3)
|
401 |
+
|
402 |
+
# stage 4
|
403 |
+
hx4 = self.stage4(hx)
|
404 |
+
hx = self.pool45(hx4)
|
405 |
+
|
406 |
+
# stage 5
|
407 |
+
hx5 = self.stage5(hx)
|
408 |
+
hx = self.pool56(hx5)
|
409 |
+
|
410 |
+
# stage 6
|
411 |
+
hx6 = self.stage6(hx)
|
412 |
+
hx6up = _upsample_like(hx6, hx5)
|
413 |
+
|
414 |
+
# -------------------- decoder --------------------
|
415 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
416 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
417 |
+
|
418 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
419 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
420 |
+
|
421 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
422 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
423 |
+
|
424 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
425 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
426 |
+
|
427 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
428 |
+
|
429 |
+
# side output
|
430 |
+
d1 = self.side1(hx1d)
|
431 |
+
|
432 |
+
d2 = self.side2(hx2d)
|
433 |
+
d2 = _upsample_like(d2, d1)
|
434 |
+
|
435 |
+
d3 = self.side3(hx3d)
|
436 |
+
d3 = _upsample_like(d3, d1)
|
437 |
+
|
438 |
+
d4 = self.side4(hx4d)
|
439 |
+
d4 = _upsample_like(d4, d1)
|
440 |
+
|
441 |
+
d5 = self.side5(hx5d)
|
442 |
+
d5 = _upsample_like(d5, d1)
|
443 |
+
|
444 |
+
d6 = self.side6(hx6)
|
445 |
+
d6 = _upsample_like(d6, d1)
|
446 |
+
|
447 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
448 |
+
|
449 |
+
"""
|
450 |
+
del hx1, hx2, hx3, hx4, hx5, hx6
|
451 |
+
del hx5d, hx4d, hx3d, hx2d, hx1d
|
452 |
+
del hx6up, hx5dup, hx4dup, hx3dup, hx2dup
|
453 |
+
"""
|
454 |
+
|
455 |
+
return d0, d1, d2, d3, d4, d5, d6
|
456 |
+
|
457 |
+
|
458 |
+
### U^2-Net small ###
|
459 |
+
class U2NETP(nn.Module):
|
460 |
+
def __init__(self, in_ch=3, out_ch=1):
|
461 |
+
super(U2NETP, self).__init__()
|
462 |
+
|
463 |
+
self.stage1 = RSU7(in_ch, 16, 64)
|
464 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
465 |
+
|
466 |
+
self.stage2 = RSU6(64, 16, 64)
|
467 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
468 |
+
|
469 |
+
self.stage3 = RSU5(64, 16, 64)
|
470 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
471 |
+
|
472 |
+
self.stage4 = RSU4(64, 16, 64)
|
473 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
474 |
+
|
475 |
+
self.stage5 = RSU4F(64, 16, 64)
|
476 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
477 |
+
|
478 |
+
self.stage6 = RSU4F(64, 16, 64)
|
479 |
+
|
480 |
+
# decoder
|
481 |
+
self.stage5d = RSU4F(128, 16, 64)
|
482 |
+
self.stage4d = RSU4(128, 16, 64)
|
483 |
+
self.stage3d = RSU5(128, 16, 64)
|
484 |
+
self.stage2d = RSU6(128, 16, 64)
|
485 |
+
self.stage1d = RSU7(128, 16, 64)
|
486 |
+
|
487 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
488 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
489 |
+
self.side3 = nn.Conv2d(64, out_ch, 3, padding=1)
|
490 |
+
self.side4 = nn.Conv2d(64, out_ch, 3, padding=1)
|
491 |
+
self.side5 = nn.Conv2d(64, out_ch, 3, padding=1)
|
492 |
+
self.side6 = nn.Conv2d(64, out_ch, 3, padding=1)
|
493 |
+
|
494 |
+
self.outconv = nn.Conv2d(6 * out_ch, out_ch, 1)
|
495 |
+
|
496 |
+
def forward(self, x):
|
497 |
+
|
498 |
+
hx = x
|
499 |
+
|
500 |
+
# stage 1
|
501 |
+
hx1 = self.stage1(hx)
|
502 |
+
hx = self.pool12(hx1)
|
503 |
+
|
504 |
+
# stage 2
|
505 |
+
hx2 = self.stage2(hx)
|
506 |
+
hx = self.pool23(hx2)
|
507 |
+
|
508 |
+
# stage 3
|
509 |
+
hx3 = self.stage3(hx)
|
510 |
+
hx = self.pool34(hx3)
|
511 |
+
|
512 |
+
# stage 4
|
513 |
+
hx4 = self.stage4(hx)
|
514 |
+
hx = self.pool45(hx4)
|
515 |
+
|
516 |
+
# stage 5
|
517 |
+
hx5 = self.stage5(hx)
|
518 |
+
hx = self.pool56(hx5)
|
519 |
+
|
520 |
+
# stage 6
|
521 |
+
hx6 = self.stage6(hx)
|
522 |
+
hx6up = _upsample_like(hx6, hx5)
|
523 |
+
|
524 |
+
# decoder
|
525 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
526 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
527 |
+
|
528 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
529 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
530 |
+
|
531 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
532 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
533 |
+
|
534 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
535 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
536 |
+
|
537 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
538 |
+
|
539 |
+
# side output
|
540 |
+
d1 = self.side1(hx1d)
|
541 |
+
|
542 |
+
d2 = self.side2(hx2d)
|
543 |
+
d2 = _upsample_like(d2, d1)
|
544 |
+
|
545 |
+
d3 = self.side3(hx3d)
|
546 |
+
d3 = _upsample_like(d3, d1)
|
547 |
+
|
548 |
+
d4 = self.side4(hx4d)
|
549 |
+
d4 = _upsample_like(d4, d1)
|
550 |
+
|
551 |
+
d5 = self.side5(hx5d)
|
552 |
+
d5 = _upsample_like(d5, d1)
|
553 |
+
|
554 |
+
d6 = self.side6(hx6)
|
555 |
+
d6 = _upsample_like(d6, d1)
|
556 |
+
|
557 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
558 |
+
|
559 |
+
"""
|
560 |
+
del hx1, hx2, hx3, hx4, hx5, hx6
|
561 |
+
del hx5d, hx4d, hx3d, hx2d, hx1d
|
562 |
+
del hx6up, hx5dup, hx4dup, hx3dup, hx2dup
|
563 |
+
"""
|
564 |
+
|
565 |
+
return d0, d1, d2, d3, d4, d5, d6
|
cloth_segmentation/options/base_options.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
class parser(object):
|
6 |
+
def __init__(self):
|
7 |
+
self.name = "training_cloth_segm_u2net_exp1" # Expriment name
|
8 |
+
self.image_folder = "../imaterialist/train/" # image folder path
|
9 |
+
self.df_path = "../imaterialist/train.csv" # label csv path
|
10 |
+
self.distributed = False # True for multi gpu training
|
11 |
+
self.isTrain = True
|
12 |
+
|
13 |
+
self.fine_width = 192 * 4
|
14 |
+
self.fine_height = 192 * 4
|
15 |
+
|
16 |
+
# Mean std params
|
17 |
+
self.mean = 0.5
|
18 |
+
self.std = 0.5
|
19 |
+
|
20 |
+
self.batchSize = 2 # 12
|
21 |
+
self.nThreads = 2 # 3
|
22 |
+
self.max_dataset_size = float("inf")
|
23 |
+
|
24 |
+
self.serial_batches = False
|
25 |
+
self.continue_train = True
|
26 |
+
if self.continue_train:
|
27 |
+
self.unet_checkpoint = "prev_checkpoints/cloth_segm_unet_surgery.pth"
|
28 |
+
|
29 |
+
self.save_freq = 1000
|
30 |
+
self.print_freq = 10
|
31 |
+
self.image_log_freq = 100
|
32 |
+
|
33 |
+
self.iter = 100000
|
34 |
+
self.lr = 0.0002
|
35 |
+
self.clip_grad = 5
|
36 |
+
|
37 |
+
self.logs_dir = osp.join("logs", self.name)
|
38 |
+
self.save_dir = osp.join("results", self.name)
|
cloth_segmentation/samples.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+

|
2 |
+

|
3 |
+

|
4 |
+

|
5 |
+

|
6 |
+

|
7 |
+

|
8 |
+

|
9 |
+

|
10 |
+

|
11 |
+

|
12 |
+

|
13 |
+

|
14 |
+

|
15 |
+

|
16 |
+

|
17 |
+

|
18 |
+
|
19 |
+
## With different poses
|
20 |
+
|
21 |
+
This model works well with different kind of poses too.
|
22 |
+

|
23 |
+

|
24 |
+
|
25 |
+
## Limitations
|
26 |
+
|
27 |
+
This model doesn't work in the following condition
|
28 |
+
- Image containing multiple people
|
29 |
+
- Dress or cloth style which are extremely different from trained dataset <br>
|
30 |
+
|
31 |
+

|
32 |
+

|
33 |
+

|
cloth_segmentation/train.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import time
|
4 |
+
import yaml
|
5 |
+
import cv2
|
6 |
+
import pprint
|
7 |
+
import traceback
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
13 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torch.optim as optim
|
19 |
+
from torch.autograd import Variable
|
20 |
+
import torch.distributed as dist
|
21 |
+
import torch.multiprocessing as mp
|
22 |
+
from torch.cuda.amp import autocast
|
23 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
24 |
+
from torch.utils.tensorboard import SummaryWriter
|
25 |
+
from torchvision import models
|
26 |
+
|
27 |
+
from data.custom_dataset_data_loader import CustomDatasetDataLoader, sample_data
|
28 |
+
|
29 |
+
|
30 |
+
from options.base_options import parser
|
31 |
+
from utils.tensorboard_utils import board_add_images
|
32 |
+
from utils.saving_utils import save_checkpoints
|
33 |
+
from utils.saving_utils import load_checkpoint, load_checkpoint_mgpu
|
34 |
+
from utils.distributed import get_world_size, set_seed, synchronize, cleanup
|
35 |
+
|
36 |
+
from networks import U2NET
|
37 |
+
|
38 |
+
|
39 |
+
def options_printing_saving(opt):
|
40 |
+
os.makedirs(opt.logs_dir, exist_ok=True)
|
41 |
+
os.makedirs(opt.save_dir, exist_ok=True)
|
42 |
+
os.makedirs(os.path.join(opt.save_dir, "images"), exist_ok=True)
|
43 |
+
os.makedirs(os.path.join(opt.save_dir, "checkpoints"), exist_ok=True)
|
44 |
+
|
45 |
+
# Saving options in yml file
|
46 |
+
option_dict = vars(opt)
|
47 |
+
with open(os.path.join(opt.save_dir, "training_options.yml"), "w") as outfile:
|
48 |
+
yaml.dump(option_dict, outfile)
|
49 |
+
|
50 |
+
for key, value in option_dict.items():
|
51 |
+
print(key, value)
|
52 |
+
|
53 |
+
|
54 |
+
def training_loop(opt):
|
55 |
+
|
56 |
+
if opt.distributed:
|
57 |
+
local_rank = int(os.environ.get("LOCAL_RANK"))
|
58 |
+
# Unique only on individual node.
|
59 |
+
device = torch.device(f"cuda:{local_rank}")
|
60 |
+
else:
|
61 |
+
device = torch.device("cuda:0")
|
62 |
+
local_rank = 0
|
63 |
+
|
64 |
+
u_net = U2NET(in_ch=3, out_ch=4)
|
65 |
+
if opt.continue_train:
|
66 |
+
u_net = load_checkpoint(u_net, opt.unet_checkpoint)
|
67 |
+
u_net = u_net.to(device)
|
68 |
+
u_net.train()
|
69 |
+
|
70 |
+
if local_rank == 0:
|
71 |
+
with open(os.path.join(opt.save_dir, "networks.txt"), "w") as outfile:
|
72 |
+
print("<----U-2-Net---->", file=outfile)
|
73 |
+
print(u_net, file=outfile)
|
74 |
+
|
75 |
+
if opt.distributed:
|
76 |
+
u_net = nn.parallel.DistributedDataParallel(
|
77 |
+
u_net,
|
78 |
+
device_ids=[local_rank],
|
79 |
+
output_device=local_rank,
|
80 |
+
broadcast_buffers=False,
|
81 |
+
)
|
82 |
+
print("Going super fast with DistributedDataParallel")
|
83 |
+
|
84 |
+
# initialize optimizer
|
85 |
+
optimizer = optim.Adam(
|
86 |
+
u_net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0
|
87 |
+
)
|
88 |
+
|
89 |
+
custom_dataloader = CustomDatasetDataLoader()
|
90 |
+
custom_dataloader.initialize(opt)
|
91 |
+
loader = custom_dataloader.get_loader()
|
92 |
+
|
93 |
+
if local_rank == 0:
|
94 |
+
dataset_size = len(custom_dataloader)
|
95 |
+
print("Total number of images avaliable for training: %d" % dataset_size)
|
96 |
+
writer = SummaryWriter(opt.logs_dir)
|
97 |
+
print("Entering training loop!")
|
98 |
+
|
99 |
+
# loss function
|
100 |
+
weights = np.array([1, 1.5, 1.5, 1.5], dtype=np.float32)
|
101 |
+
weights = torch.from_numpy(weights).to(device)
|
102 |
+
loss_CE = nn.CrossEntropyLoss(weight=weights).to(device)
|
103 |
+
|
104 |
+
pbar = range(opt.iter)
|
105 |
+
get_data = sample_data(loader)
|
106 |
+
|
107 |
+
start_time = time.time()
|
108 |
+
# Main training loop
|
109 |
+
for itr in pbar:
|
110 |
+
data_batch = next(get_data)
|
111 |
+
image, label = data_batch
|
112 |
+
image = Variable(image.to(device))
|
113 |
+
label = label.type(torch.long)
|
114 |
+
label = Variable(label.to(device))
|
115 |
+
|
116 |
+
d0, d1, d2, d3, d4, d5, d6 = u_net(image)
|
117 |
+
|
118 |
+
loss0 = loss_CE(d0, label)
|
119 |
+
loss1 = loss_CE(d1, label)
|
120 |
+
loss2 = loss_CE(d2, label)
|
121 |
+
loss3 = loss_CE(d3, label)
|
122 |
+
loss4 = loss_CE(d4, label)
|
123 |
+
loss5 = loss_CE(d5, label)
|
124 |
+
loss6 = loss_CE(d6, label)
|
125 |
+
del d1, d2, d3, d4, d5, d6
|
126 |
+
|
127 |
+
total_loss = loss0 * 1.5 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
|
128 |
+
|
129 |
+
for param in u_net.parameters():
|
130 |
+
param.grad = None
|
131 |
+
|
132 |
+
total_loss.backward()
|
133 |
+
if opt.clip_grad != 0:
|
134 |
+
nn.utils.clip_grad_norm_(u_net.parameters(), opt.clip_grad)
|
135 |
+
optimizer.step()
|
136 |
+
|
137 |
+
if local_rank == 0:
|
138 |
+
# printing and saving work
|
139 |
+
if itr % opt.print_freq == 0:
|
140 |
+
pprint.pprint(
|
141 |
+
"[step-{:08d}] [time-{:.3f}] [total_loss-{:.6f}] [loss0-{:.6f}]".format(
|
142 |
+
itr, time.time() - start_time, total_loss, loss0
|
143 |
+
)
|
144 |
+
)
|
145 |
+
|
146 |
+
if itr % opt.image_log_freq == 0:
|
147 |
+
d0 = F.log_softmax(d0, dim=1)
|
148 |
+
d0 = torch.max(d0, dim=1, keepdim=True)[1]
|
149 |
+
visuals = [[image, torch.unsqueeze(label, dim=1) * 85, d0 * 85]]
|
150 |
+
board_add_images(writer, "grid", visuals, itr)
|
151 |
+
|
152 |
+
writer.add_scalar("total_loss", total_loss, itr)
|
153 |
+
writer.add_scalar("loss0", loss0, itr)
|
154 |
+
|
155 |
+
if itr % opt.save_freq == 0:
|
156 |
+
save_checkpoints(opt, itr, u_net)
|
157 |
+
|
158 |
+
print("Training done!")
|
159 |
+
if local_rank == 0:
|
160 |
+
itr += 1
|
161 |
+
save_checkpoints(opt, itr, u_net)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
|
166 |
+
opt = parser()
|
167 |
+
|
168 |
+
if opt.distributed:
|
169 |
+
if int(os.environ.get("LOCAL_RANK")) == 0:
|
170 |
+
options_printing_saving(opt)
|
171 |
+
else:
|
172 |
+
options_printing_saving(opt)
|
173 |
+
|
174 |
+
try:
|
175 |
+
if opt.distributed:
|
176 |
+
print("Initialize Process Group...")
|
177 |
+
torch.distributed.init_process_group(backend="nccl", init_method="env://")
|
178 |
+
synchronize()
|
179 |
+
|
180 |
+
set_seed(1000)
|
181 |
+
training_loop(opt)
|
182 |
+
cleanup(opt.distributed)
|
183 |
+
print("Exiting..............")
|
184 |
+
|
185 |
+
except KeyboardInterrupt:
|
186 |
+
cleanup(opt.distributed)
|
187 |
+
|
188 |
+
except Exception:
|
189 |
+
traceback.print_exc(file=sys.stdout)
|
190 |
+
cleanup(opt.distributed)
|
cloth_segmentation/utils/distributed.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import pickle
|
6 |
+
import torch
|
7 |
+
from torch import distributed as dist
|
8 |
+
from torch.utils.data.sampler import Sampler
|
9 |
+
|
10 |
+
|
11 |
+
def set_seed(seed):
|
12 |
+
torch.manual_seed(seed)
|
13 |
+
torch.cuda.manual_seed_all(seed)
|
14 |
+
torch.backends.cudnn.deterministic = True
|
15 |
+
torch.backends.cudnn.benchmark = True
|
16 |
+
np.random.seed(seed)
|
17 |
+
random.seed(seed)
|
18 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
19 |
+
|
20 |
+
|
21 |
+
def synchronize():
|
22 |
+
if not dist.is_available():
|
23 |
+
return
|
24 |
+
|
25 |
+
if not dist.is_initialized():
|
26 |
+
return
|
27 |
+
|
28 |
+
world_size = dist.get_world_size()
|
29 |
+
if world_size == 1:
|
30 |
+
return
|
31 |
+
|
32 |
+
dist.barrier()
|
33 |
+
|
34 |
+
|
35 |
+
def cleanup(distributed):
|
36 |
+
if distributed:
|
37 |
+
dist.destroy_process_group()
|
38 |
+
|
39 |
+
|
40 |
+
def get_world_size():
|
41 |
+
if not dist.is_available():
|
42 |
+
return 1
|
43 |
+
|
44 |
+
if not dist.is_initialized():
|
45 |
+
return 1
|
46 |
+
|
47 |
+
return dist.get_world_size()
|
cloth_segmentation/utils/saving_utils.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import copy
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from collections import OrderedDict
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
def load_checkpoint(model, checkpoint_path):
|
11 |
+
if not os.path.exists(checkpoint_path):
|
12 |
+
print("----No checkpoints at given path----")
|
13 |
+
return
|
14 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location=torch.device("cpu")))
|
15 |
+
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
|
16 |
+
return model
|
17 |
+
|
18 |
+
|
19 |
+
def load_checkpoint_mgpu(model, checkpoint_path):
|
20 |
+
if not os.path.exists(checkpoint_path):
|
21 |
+
print("----No checkpoints at given path----")
|
22 |
+
return
|
23 |
+
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
24 |
+
new_state_dict = OrderedDict()
|
25 |
+
for k, v in model_state_dict.items():
|
26 |
+
name = k[7:] # remove `module.`
|
27 |
+
new_state_dict[name] = v
|
28 |
+
|
29 |
+
model.load_state_dict(new_state_dict)
|
30 |
+
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
|
31 |
+
return model
|
32 |
+
|
33 |
+
|
34 |
+
def save_checkpoint(model, save_path):
|
35 |
+
print(save_path)
|
36 |
+
if not os.path.exists(os.path.dirname(save_path)):
|
37 |
+
os.makedirs(os.path.dirname(save_path))
|
38 |
+
torch.save(model.state_dict(), save_path)
|
39 |
+
|
40 |
+
|
41 |
+
def save_checkpoints(opt, itr, net):
|
42 |
+
save_checkpoint(
|
43 |
+
net,
|
44 |
+
os.path.join(opt.save_dir, "checkpoints", "itr_{:08d}_u2net.pth".format(itr)),
|
45 |
+
)
|
cloth_segmentation/utils/tensorboard_utils.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.utils.tensorboard import SummaryWriter
|
7 |
+
|
8 |
+
# Adding image in tensorboardX
|
9 |
+
|
10 |
+
|
11 |
+
def tensor_for_board(img_tensor):
|
12 |
+
# map into [0,1]
|
13 |
+
tensor = (img_tensor.clone()+1) * 0.5
|
14 |
+
tensor.cpu().clamp(0, 1)
|
15 |
+
|
16 |
+
if tensor.size(1) == 1:
|
17 |
+
tensor = tensor.repeat(1, 3, 1, 1)
|
18 |
+
|
19 |
+
return tensor
|
20 |
+
|
21 |
+
|
22 |
+
def tensor_list_for_board(img_tensors_list):
|
23 |
+
grid_h = len(img_tensors_list)
|
24 |
+
grid_w = max(len(img_tensors) for img_tensors in img_tensors_list)
|
25 |
+
|
26 |
+
batch_size, channel, height, width = tensor_for_board(
|
27 |
+
img_tensors_list[0][0]).size()
|
28 |
+
canvas_h = grid_h * height
|
29 |
+
canvas_w = grid_w * width
|
30 |
+
canvas = torch.FloatTensor(
|
31 |
+
batch_size, channel, canvas_h, canvas_w).fill_(0.5)
|
32 |
+
for i, img_tensors in enumerate(img_tensors_list):
|
33 |
+
for j, img_tensor in enumerate(img_tensors):
|
34 |
+
offset_h = i * height
|
35 |
+
offset_w = j * width
|
36 |
+
tensor = tensor_for_board(img_tensor)
|
37 |
+
canvas[:, :, offset_h: offset_h + height,
|
38 |
+
offset_w: offset_w + width].copy_(tensor)
|
39 |
+
|
40 |
+
return canvas
|
41 |
+
|
42 |
+
|
43 |
+
def board_add_image(board, tag_name, img_tensor, step_count):
|
44 |
+
tensor = tensor_for_board(img_tensor)
|
45 |
+
|
46 |
+
for i, img in enumerate(tensor):
|
47 |
+
board.add_image('%s/%03d' % (tag_name, i), img, step_count)
|
48 |
+
|
49 |
+
|
50 |
+
def board_add_images(board, tag_name, img_tensors_list, step_count):
|
51 |
+
tensor = tensor_list_for_board(img_tensors_list)
|
52 |
+
|
53 |
+
for i, img in enumerate(tensor):
|
54 |
+
board.add_image('%s/%03d' % (tag_name, i), img, step_count)
|