import gradio as gr import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET # Import U²-Net # Load U²-Net model model_path = "cloth_segmentation/networks/u2net.pth" # Ensure this path is correct model = U2NET(3, 1) model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) model.eval() def segment_dress(image_np): """Segment the dress from the image using U²-Net.""" transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() mask = (output > 0.5).astype(np.uint8) # Thresholding for binary mask mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0])) # Resize mask to original return mask def change_dress_color(image_path, color): """Change the dress color based on the detected dress mask.""" if image_path is None: return None img = Image.open(image_path).convert("RGB") img_np = np.array(img) mask = segment_dress(img_np) if mask is None: return img # No dress detected # Convert the selected color to HSV color_map = { "Red": (0, 255, 255), "Blue": (120, 255, 255), "Green": (60, 255, 255), "Yellow": (30, 255, 255), "Purple": (150, 255, 255) } hsv_color = np.uint8([[color_map.get(color, (0, 255, 255))]]) # Default to Red # Convert to BGR new_color_bgr = cv2.cvtColor(hsv_color, cv2.COLOR_HSV2BGR)[0][0] # Apply the color change img_hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV) img_hsv[..., 0] = mask * new_color_bgr[0] + (1 - mask) * img_hsv[..., 0] # Adjust hue img_hsv[..., 1] = mask * new_color_bgr[1] + (1 - mask) * img_hsv[..., 1] # Adjust saturation img_hsv[..., 2] = mask * new_color_bgr[2] + (1 - mask) * img_hsv[..., 2] # Adjust value img_recolored = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB) return Image.fromarray(img_recolored) # Gradio Interface demo = gr.Interface( fn=change_dress_color, inputs=[ gr.Image(type="filepath", label="Upload Dress Image"), gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color") ], outputs=gr.Image(type="pil", label="Color Changed Dress"), title="Dress Color Changer", description="Upload an image of a dress and select a new color to change its appearance." ) if __name__ == "__main__": demo.launch()