import gradio as gr import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET # Load U²-Net model model_path = "cloth_segmentation/networks/u2net.pth" model = U2NET(3, 1) state_dict = torch.load(model_path, map_location=torch.device('cpu')) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} model.load_state_dict(state_dict) model.eval() def refine_mask(mask): """Refines mask using morphological closing followed by Gaussian blur""" kernel = np.ones((7, 7), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close holes inside dress mask = cv2.GaussianBlur(mask, (7, 7), 1.5) return mask def segment_dress(image_np): """Segment dress using U²-Net""" transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() output = (output - output.min()) / (output.max() - output.min() + 1e-8) # Normalize to [0, 1] dress_mask = (output > 0.5).astype(np.uint8) * 255 dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_LINEAR) return refine_mask(dress_mask) def apply_grabcut(image_np, dress_mask): """Refines the mask using GrabCut to avoid color bleeding""" bgd_model = np.zeros((1, 65), np.float64) fgd_model = np.zeros((1, 65), np.float64) mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8') # Get bounding box of the mask coords = cv2.findNonZero(dress_mask) x, y, w, h = cv2.boundingRect(coords) rect = (x, y, w, h) cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_MASK) refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8") return refine_mask(refined_mask) def recolor_dress(image_np, dress_mask, target_color): """Changes dress color while keeping texture & lighting intact""" # Convert target color to LAB target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] # Convert image to LAB img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) # Compute mean LAB values of dress pixels dress_pixels = img_lab[dress_mask > 0] if len(dress_pixels) == 0: return image_np # No dress detected mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0) # Apply LAB shift a_shift = target_color_lab[1] - mean_A b_shift = target_color_lab[2] - mean_B img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255) img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255) # Convert back to RGB img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB) # Create feathered mask for smooth blending lightness_mask = (img_lab[..., 0] / 255.0) feathered_mask = cv2.GaussianBlur(dress_mask, (15, 15), 5) adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8) # Blend the recolored dress with the original image img_final = (image_np * (1 - adaptive_feather[..., None] / 255) + img_recolored * (adaptive_feather[..., None] / 255)).astype(np.uint8) return img_final def change_dress_color(img, color): """Main function to change dress color naturally""" if img is None: return None img_np = np.array(img) # Get dress segmentation mask dress_mask = segment_dress(img_np) if dress_mask is None: return img # No dress detected # Further refine mask with GrabCut dress_mask = apply_grabcut(img_np, dress_mask) # Convert the selected color to BGR color_map = { "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), "White": (255, 255, 255), "Black": (0, 0, 0) } new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Apply recoloring with blending img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr) return Image.fromarray(img_recolored) # Gradio Interface demo = gr.Interface( fn=change_dress_color, inputs=[ gr.Image(type = "pil", label="Upload Dress Image"), gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color") ], outputs=gr.Image(type = "pil", label="Color Changed Dress"), title="AI-Powered Dress Color Changer", description="Upload an image of a dress and select a new color. The AI will change the dress color naturally while keeping the fabric texture." ) if __name__ == "__main__": demo.launch()