import gradio as gr import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET # Load U²-Net model model_path = "cloth_segmentation/networks/u2net.pth" model = U2NET(3, 1) state_dict = torch.load(model_path, map_location=torch.device('cpu')) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} model.load_state_dict(state_dict) model.eval() def refine_mask(mask): """Enhanced mask refinement with erosion and morphological operations""" # First closing to fill small holes close_kernel = np.ones((5, 5), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) # Erosion to remove small protrusions and extra areas erode_kernel = np.ones((3, 3), np.uint8) mask = cv2.erode(mask, erode_kernel, iterations=1) # Second closing to refine edges after erosion mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) # Final blur to smooth edges while preserving shape mask = cv2.GaussianBlur(mask, (5, 5), 1.5) return mask def segment_dress(image_np): """Improved dress segmentation with adaptive thresholding""" transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() # Adaptive threshold calculation output = (output - output.min()) / (output.max() - output.min() + 1e-8) adaptive_thresh = np.mean(output) + 0.2 # Increased threshold for tighter mask dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255 # Preserve hard edges during resize dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) return refine_mask(dress_mask) def apply_grabcut(image_np, dress_mask): """Mask refinement using GrabCut""" bgd_model = np.zeros((1, 65), np.float64) fgd_model = np.zeros((1, 65), np.float64) mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8') # Get bounding box coordinates coords = cv2.findNonZero(dress_mask) if coords is not None: x, y, w, h = cv2.boundingRect(coords) rect = (x, y, w, h) cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK) refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8") return refine_mask(refined_mask) def recolor_dress(image_np, dress_mask, target_color): """Color transformation with improved blending""" # Convert colors to LAB space target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) # Calculate color shifts dress_pixels = img_lab[dress_mask > 0] if len(dress_pixels) == 0: return image_np mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0) a_shift = target_color_lab[1] - mean_A b_shift = target_color_lab[2] - mean_B # Apply color transformation img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255) img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255) # Create adaptive blending mask img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB) feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7) lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7 adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8) # Smooth blending return (image_np * (1 - adaptive_feather[..., None]/255) + img_recolored * (adaptive_feather[..., None]/255)).astype(np.uint8) def change_dress_color(img, color): """Main processing function with error handling""" if img is None: return None color_map = { "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), "White": (255, 255, 255), "Black": (0, 0, 0) } new_color_bgr = color_map.get(color, (0, 0, 255)) img_np = np.array(img) try: dress_mask = segment_dress(img_np) if np.sum(dress_mask) < 1000: # Minimum mask area threshold return img dress_mask = apply_grabcut(img_np, dress_mask) img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr) return Image.fromarray(img_recolored) except Exception as e: print(f"Error processing image: {str(e)}") return img # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# AI Dress Color Changer") gr.Markdown("Upload a dress image and select a new color for realistic recoloring") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Input Image") color_choice = gr.Dropdown( choices=["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], value="Red", label="Select New Color" ) process_btn = gr.Button("Recolor Dress") with gr.Column(): output_image = gr.Image(type="pil", label="Result") process_btn.click( fn=change_dress_color, inputs=[input_image, color_choice], outputs=output_image ) if __name__ == "__main__": demo.launch()