File size: 11,308 Bytes
d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import argparse
import os
import os.path as osp
import sys
import time
import warnings
from collections import defaultdict
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from accelerate import Accelerator
from accelerate.utils import gather_object
from PIL import Image
from tqdm import tqdm
warnings.filterwarnings("ignore") # ignore warning
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent.parent.parent))
from tools.metrics.utils import tracker
def parse_args():
parser = argparse.ArgumentParser(description="DPG-Bench evaluation.")
parser.add_argument("--image-root-path", type=str, default=None)
parser.add_argument("--exp_name", type=str, default="Sana")
parser.add_argument("--txt_path", type=str, default=None)
parser.add_argument("--sample_nums", type=int, default=1065)
parser.add_argument("--resolution", type=int, default=None)
parser.add_argument("--csv", type=str, default="tools/metrics/dpg_bench/dpg_bench.csv")
parser.add_argument("--res-path", type=str, default=None)
parser.add_argument("--pic-num", type=int, default=1)
parser.add_argument("--vqa-model", type=str, default="mplug")
# online logging setting
parser.add_argument("--log_metric", type=str, default="metric")
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--log_dpg", action="store_true")
parser.add_argument("--suffix_label", type=str, default="", help="used for image-reward online log")
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for image-reward online log")
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="t2i-evit-baseline",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--name",
type=str,
default="baseline",
help=("Wandb Project Name"),
)
args = parser.parse_args()
return args
class MPLUG(torch.nn.Module):
def __init__(self, ckpt="damo/mplug_visual-question-answering_coco_large_en", device="gpu"):
super().__init__()
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
self.pipeline_vqa = pipeline(Tasks.visual_question_answering, model=ckpt, device=device)
def vqa(self, image, question):
input_vqa = {"image": image, "question": question}
result = self.pipeline_vqa(input_vqa)
return result["text"]
def prepare_dpg_data(args):
previous_id = ""
current_id = ""
question_dict = dict()
category_count = defaultdict(int)
# 'item_id', 'text', 'keywords', 'proposition_id', 'dependency', 'category_broad', 'category_detailed', 'tuple', 'question_natural_language'
data = pd.read_csv(args.csv)
for i, line in data.iterrows():
if i == 0:
continue
current_id = line.item_id
qid = int(line.proposition_id)
dependency_list_str = line.dependency.split(",")
dependency_list_int = []
for d in dependency_list_str:
d_int = int(d.strip())
dependency_list_int.append(d_int)
if current_id == previous_id:
question_dict[current_id]["qid2tuple"][qid] = line.tuple
question_dict[current_id]["qid2dependency"][qid] = dependency_list_int
question_dict[current_id]["qid2question"][qid] = line.question_natural_language
else:
question_dict[current_id] = dict(
qid2tuple={qid: line.tuple},
qid2dependency={qid: dependency_list_int},
qid2question={qid: line.question_natural_language},
)
category = line.question_natural_language.split("(")[0].strip()
category_count[category] += 1
previous_id = current_id
return question_dict
def crop_image(input_image, crop_tuple=None):
if crop_tuple is None:
return input_image
cropped_image = input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3]))
return cropped_image
def compute_dpg_one_sample(args, question_dict, image_path, vqa_model, resolution):
generated_image = Image.open(image_path)
crop_tuples_list = [
(0, 0, resolution, resolution),
(resolution, 0, resolution * 2, resolution),
(0, resolution, resolution, resolution * 2),
(resolution, resolution, resolution * 2, resolution * 2),
]
crop_tuples = crop_tuples_list[: args.pic_num]
key = osp.basename(image_path).split(".")[0]
value = question_dict.get(key, None)
qid2tuple = value["qid2tuple"]
qid2question = value["qid2question"]
qid2dependency = value["qid2dependency"]
qid2answer = dict()
qid2scores = dict()
qid2validity = dict()
scores = []
for crop_tuple in crop_tuples:
cropped_image = crop_image(generated_image, crop_tuple)
for id, question in qid2question.items():
answer = vqa_model.vqa(cropped_image, question)
qid2answer[id] = answer
qid2scores[id] = float(answer == "yes")
with open(args.res_path.replace(".txt", "_detail.txt"), "a") as f:
f.write(image_path + ", " + str(crop_tuple) + ", " + question + ", " + answer + "\n")
qid2scores_orig = qid2scores.copy()
for id, parent_ids in qid2dependency.items():
# zero-out scores if parent questions are answered 'no'
any_parent_answered_no = False
for parent_id in parent_ids:
if parent_id == 0:
continue
if qid2scores[parent_id] == 0:
any_parent_answered_no = True
break
if any_parent_answered_no:
qid2scores[id] = 0
qid2validity[id] = False
else:
qid2validity[id] = True
score = sum(qid2scores.values()) / len(qid2scores)
scores.append(score)
average_score = sum(scores) / len(scores)
with open(args.res_path, "a") as f:
f.write(image_path + ", " + ", ".join(str(i) for i in scores) + ", " + str(average_score) + "\n")
return average_score, qid2tuple, qid2scores_orig
def main():
accelerator = Accelerator()
question_dict = prepare_dpg_data(args)
txt_path = args.txt_path if args.txt_path is not None else args.image_root_path
args.image_root_path = osp.join(args.image_root_path, args.exp_name)
sample_nums = args.sample_nums
args.res_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results.txt")
save_txt_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results_simple.txt")
if os.path.exists(save_txt_path):
with open(save_txt_path) as f:
dpg_value = f.readlines()[0].strip()
print(f"DPG-Bench: {dpg_value}: {args.exp_name}")
return {args.exp_name: float(dpg_value)}
if accelerator.is_main_process:
with open(args.res_path, "w") as f:
pass
with open(args.res_path.replace(".txt", "_detail.txt"), "w") as f:
pass
device = str(accelerator.device)
if args.vqa_model == "mplug":
vqa_model = MPLUG(device=device)
else:
raise NotImplementedError
vqa_model = accelerator.prepare(vqa_model)
vqa_model = getattr(vqa_model, "module", vqa_model)
filename_list = os.listdir(args.image_root_path)
num_each_rank = len(filename_list) / accelerator.num_processes
local_rank = accelerator.process_index
local_filename_list = filename_list[round(local_rank * num_each_rank) : round((local_rank + 1) * num_each_rank)]
local_scores = []
local_category2scores = defaultdict(list)
model_id = osp.basename(args.image_root_path)
print(f"Start to conduct evaluation of {model_id}")
for fn in tqdm(local_filename_list):
image_path = osp.join(args.image_root_path, fn)
try:
# compute score of one sample
score, qid2tuple, qid2scores = compute_dpg_one_sample(
args=args,
question_dict=question_dict,
image_path=image_path,
vqa_model=vqa_model,
resolution=args.resolution,
)
local_scores.append(score)
# summarize scores by categoris
for qid in qid2tuple.keys():
category = qid2tuple[qid].split("(")[0].strip()
qid_score = qid2scores[qid]
local_category2scores[category].append(qid_score)
except Exception as e:
print("Failed filename:", fn, e)
continue
accelerator.wait_for_everyone()
global_dpg_scores = gather_object(local_scores)
mean_dpg_score = np.mean(global_dpg_scores)
global_categories = gather_object(list(local_category2scores.keys()))
global_categories = set(global_categories)
global_category2scores = dict()
global_average_scores = []
for category in global_categories:
local_category_scores = local_category2scores.get(category, [])
global_category2scores[category] = gather_object(local_category_scores)
global_average_scores.extend(gather_object(local_category_scores))
global_category2scores_l1 = defaultdict(list)
for category in global_categories:
l1_category = category.split("-")[0].strip()
global_category2scores_l1[l1_category].extend(global_category2scores[category])
time.sleep(3)
if accelerator.is_main_process:
output = f"Model: {model_id}\n"
output += "L1 category scores:\n"
for l1_category in global_category2scores_l1.keys():
output += f"\t{l1_category}: {np.mean(global_category2scores_l1[l1_category]) * 100}\n"
output += "L2 category scores:\n"
for category in sorted(global_categories):
output += f"\t{category}: {np.mean(global_category2scores[category]) * 100}\n"
output += f"Image path: {args.image_root_path}\n"
output += f"Save results to: {args.res_path}\n"
output += f"DPG-Bench score: {mean_dpg_score * 100}"
with open(args.res_path, "a") as f:
f.write(output + "\n")
print(output)
if accelerator.is_main_process:
with open(save_txt_path, "w") as file:
file.write(str(mean_dpg_score * 100))
return {args.exp_name: mean_dpg_score * 100}
if __name__ == "__main__":
args = parse_args()
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
dpg_result = main()
if args.log_dpg:
tracker(args, dpg_result, args.suffix_label, pattern=args.tracker_pattern, metric="DPG")
|