# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module provides Pyserini's Python search interface to Anserini. The main entry point is the ``LuceneImpactSearcher`` class, which wraps the Java class with the same name in Anserini. """ import logging import os import pickle from tqdm import tqdm from typing import Dict, List, Optional, Union from collections import namedtuple import numpy as np import scipy from pyserini.encode import QueryEncoder, TokFreqQueryEncoder, UniCoilQueryEncoder, \ CachedDataQueryEncoder, SpladeQueryEncoder, SlimQueryEncoder from pyserini.index import Document from pyserini.pyclass import autoclass, JFloat, JArrayList, JHashMap from pyserini.util import download_prebuilt_index, download_encoded_corpus logger = logging.getLogger(__name__) # Wrappers around Anserini classes JImpactSearcher = autoclass('io.anserini.search.SimpleImpactSearcher') JImpactSearcherResult = autoclass('io.anserini.search.SimpleImpactSearcher$Result') class LuceneImpactSearcher: """Wrapper class for ``ImpactSearcher`` in Anserini. Parameters ---------- index_dir : str Path to Lucene index directory. query_encoder: QueryEncoder or str QueryEncoder to encode query text """ def __init__(self, index_dir: str, query_encoder: Union[QueryEncoder, str], min_idf=0): self.index_dir = index_dir self.idf = self._compute_idf(index_dir) self.min_idf = min_idf self.object = JImpactSearcher(index_dir) self.num_docs = self.object.get_total_num_docs() if isinstance(query_encoder, str) or query_encoder is None: self.query_encoder = self._init_query_encoder_from_str(query_encoder) else: self.query_encoder = query_encoder @classmethod def from_prebuilt_index(cls, prebuilt_index_name: str, query_encoder: Union[QueryEncoder, str], min_idf=0): """Build a searcher from a pre-built index; download the index if necessary. Parameters ---------- prebuilt_index_name : str Prebuilt index name. Returns ------- LuceneSearcher Searcher built from the prebuilt index. """ print(f'Attempting to initialize pre-built index {prebuilt_index_name}.') try: index_dir = download_prebuilt_index(prebuilt_index_name) except ValueError as e: print(str(e)) return None print(f'Initializing {prebuilt_index_name}...') return cls(index_dir, query_encoder, min_idf) @staticmethod def list_prebuilt_indexes(): """Display information about available prebuilt indexes.""" print("Not Implemented") def search(self, q: str, k: int = 10, fields=dict()) -> List[JImpactSearcherResult]: """Search the collection. Parameters ---------- q : str Query string. k : int Number of hits to return. min_idf : int Minimum idf for query tokens fields : dict Optional map of fields to search with associated boosts. Returns ------- List[JImpactSearcherResult] List of search results. """ jfields = JHashMap() for (field, boost) in fields.items(): jfields.put(field, JFloat(boost)) encoded_query = self.query_encoder.encode(q) jquery = JHashMap() for (token, weight) in encoded_query.items(): if token in self.idf and self.idf[token] > self.min_idf: jquery.put(token, JFloat(weight)) if not fields: hits = self.object.search(jquery, k) else: hits = self.object.searchFields(jquery, jfields, k) return hits def batch_search(self, queries: List[str], qids: List[str], k: int = 10, threads: int = 1, fields=dict()) -> Dict[str, List[JImpactSearcherResult]]: """Search the collection concurrently for multiple queries, using multiple threads. Parameters ---------- queries : List[str] List of query string. qids : List[str] List of corresponding query ids. k : int Number of hits to return. threads : int Maximum number of threads to use. min_idf : int Minimum idf for query tokens fields : dict Optional map of fields to search with associated boosts. Returns ------- Dict[str, List[JImpactSearcherResult]] Dictionary holding the search results, with the query ids as keys and the corresponding lists of search results as the values. """ query_lst = JArrayList() qid_lst = JArrayList() for q in queries: encoded_query = self.query_encoder.encode(q) jquery = JHashMap() for (token, weight) in encoded_query.items(): if token in self.idf and self.idf[token] > self.min_idf: jquery.put(token, JFloat(weight)) query_lst.add(jquery) for qid in qids: jqid = qid qid_lst.add(jqid) jfields = JHashMap() for (field, boost) in fields.items(): jfields.put(field, JFloat(boost)) if not fields: results = self.object.batch_search(query_lst, qid_lst, int(k), int(threads)) else: results = self.object.batch_search_fields(query_lst, qid_lst, int(k), int(threads), jfields) return {r.getKey(): r.getValue() for r in results.entrySet().toArray()} def doc(self, docid: Union[str, int]) -> Optional[Document]: """Return the :class:`Document` corresponding to ``docid``. The ``docid`` is overloaded: if it is of type ``str``, it is treated as an external collection ``docid``; if it is of type ``int``, it is treated as an internal Lucene ``docid``. Method returns ``None`` if the ``docid`` does not exist in the index. Parameters ---------- docid : Union[str, int] Overloaded ``docid``: either an external collection ``docid`` (``str``) or an internal Lucene ``docid`` (``int``). Returns ------- Document :class:`Document` corresponding to the ``docid``. """ lucene_document = self.object.document(docid) if lucene_document is None: return None return Document(lucene_document) def doc_by_field(self, field: str, q: str) -> Optional[Document]: """Return the :class:`Document` based on a ``field`` with ``id``. For example, this method can be used to fetch document based on alternative primary keys that have been indexed, such as an article's DOI. Method returns ``None`` if no such document exists. Parameters ---------- field : str Field to look up. q : str Unique id of document. Returns ------- Document :class:`Document` whose ``field`` is ``id``. """ lucene_document = self.object.documentByField(field, q) if lucene_document is None: return None return Document(lucene_document) def close(self): """Close the searcher.""" self.object.close() @staticmethod def _init_query_encoder_from_str(query_encoder): if query_encoder is None: return TokFreqQueryEncoder() elif os.path.isfile(query_encoder) and (query_encoder.endswith('jsonl') or query_encoder.encode('json')): return CachedDataQueryEncoder(query_encoder) elif 'unicoil' in query_encoder.lower(): return UniCoilQueryEncoder(query_encoder) elif 'splade' in query_encoder.lower(): return SpladeQueryEncoder(query_encoder) elif 'slim' in query_encoder.lower(): return SlimQueryEncoder(query_encoder) @staticmethod def _compute_idf(index_path): from pyserini.index.lucene import IndexReader index_reader = IndexReader(index_path) tokens = [] dfs = [] for term in index_reader.terms(): dfs.append(term.df) tokens.append(term.term) idfs = np.log((index_reader.stats()['documents'] / (np.array(dfs)))) return dict(zip(tokens, idfs)) SlimResult = namedtuple("SlimResult", "docid score") def maxsim(entry): q_embed, d_embeds, d_lens, qid, scores, docids = entry if len(d_embeds) == 0: return qid, scores, docids d_embeds = scipy.sparse.vstack(d_embeds).transpose() # (LD x 1000) x D max_scores = (q_embed@d_embeds).todense() # LQ x (LD x 1000) scores = [] start = 0 for d_len in d_lens: scores.append(max_scores[:, start:start+d_len].max(1).sum()) start += d_len scores, docids = list(zip(*sorted(list(zip(scores, docids)), key=lambda x: -x[0]))) return qid, scores, docids class SlimSearcher(LuceneImpactSearcher): def __init__(self, encoded_corpus, *args, **kwargs): super().__init__(*args, **kwargs) print("Loading sparse corpus vectors for fast reranking...") with open(os.path.join(encoded_corpus, "sparse_range.pkl"), "rb") as f: self.sparse_ranges = pickle.load(f) sparse_vecs = scipy.sparse.load_npz(os.path.join(encoded_corpus, "sparse_vec.npz")) self.sparse_vecs = [sparse_vecs[start:end] for start, end in tqdm(self.sparse_ranges)] @classmethod def from_prebuilt_index(cls, encoded_corpus:str, prebuilt_index_name: str, query_encoder: Union[QueryEncoder, str], min_idf=0): print(f'Attempting to initialize pre-built index {prebuilt_index_name}.') try: index_dir = download_prebuilt_index(prebuilt_index_name) encoded_corpus = download_encoded_corpus(encoded_corpus) except ValueError as e: print(str(e)) return None print(f'Initializing {prebuilt_index_name}...') return cls(encoded_corpus, index_dir, query_encoder, min_idf) def search(self, q: str, k: int = 10, fields=dict()) -> List[JImpactSearcherResult]: jfields = JHashMap() for (field, boost) in fields.items(): jfields.put(field, JFloat(boost)) fusion_encoded_query, sparse_encoded_query = self.query_encoder.encode(q, return_sparse=True) jquery = JHashMap() for (token, weight) in fusion_encoded_query.items(): if token in self.idf and self.idf[token] > self.min_idf: jquery.put(token, JFloat(weight)) if self.sparse_vecs is not None: search_k = k * (self.min_idf + 1) if not fields: hits = self.object.search(jquery, search_k) else: hits = self.object.searchFields(jquery, jfields, search_k) hits = self.fast_rerank([sparse_encoded_query], {0: hits}, k)[0] return hits def batch_search(self, queries: List[str], qids: List[str], k: int = 10, threads: int = 1, fields=dict()) -> Dict[str, List[JImpactSearcherResult]]: query_lst = JArrayList() qid_lst = JArrayList() sparse_encoded_queries = {} for qid, q in zip(qids, queries): fusion_encoded_query, sparse_encoded_query = self.query_encoder.encode(q, return_sparse=True) jquery = JHashMap() for (token, weight) in fusion_encoded_query.items(): if token in self.idf and self.idf[token] > self.min_idf: jquery.put(token, JFloat(weight)) query_lst.add(jquery) sparse_encoded_queries[qid] = sparse_encoded_query for qid in qids: jqid = qid qid_lst.add(jqid) jfields = JHashMap() for (field, boost) in fields.items(): jfields.put(field, JFloat(boost)) if not fields: results = self.object.batch_search(query_lst, qid_lst, k * (self.min_idf + 1), threads) else: results = self.object.batch_search_fields(query_lst, qid_lst, k * (self.min_idf + 1), threads, jfields) results = {r.getKey(): r.getValue() for r in results.entrySet().toArray()} results = self.fast_rerank(sparse_encoded_queries, results, k) return results def fast_rerank(self, q_embeds, results, k): all_scores = [] all_docids = [] all_q_embeds = [] all_d_embeds = [] all_d_lens = [] qids = [] for qid in results.keys(): all_q_embeds.append(q_embeds[qid]) qids.append(qid) hits = results[qid] docids = [] scores = [] d_embeds = [] d_lens = [] for hit in hits: docids.append(hit.docid) scores.append(hit.score) start, end = self.sparse_ranges[int(hit.docid)] d_embeds.append(self.sparse_vecs[int(hit.docid)]) d_lens.append(end-start) all_scores.append(scores) all_docids.append(docids) all_d_embeds.append(d_embeds) all_d_lens.append(d_lens) entries = list(zip(all_q_embeds, all_d_embeds, all_d_lens, qids, all_scores, all_docids)) results = [maxsim(entry) for entry in entries] anserini_results = {} for qid, scores, docids in results: hits = [] for score, docid in list(zip(scores, docids))[:k]: hits.append(SlimResult(docid, score)) anserini_results[qid] = hits return anserini_results