# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import gzip import json import os import time from pyserini.index.lucene import LuceneIndexer, JacksonObjectMapper if __name__ == '__main__': parser = argparse.ArgumentParser(description='Index MS MARCO Passage corpus.') parser.add_argument('--input', required=True, type=str, help='Path to MS MARCO Passage corpus.') parser.add_argument('--index', required=True, type=str, help='Path to index.') parser.add_argument('--threads', required=True, type=int, help='Number of threads.') parser.add_argument('--batch-size', required=True, type=int, help='Batch size.') parser.add_argument('--raw', action='store_true', default=False, help="Directly index raw documents.") parser.add_argument('--dict', action='store_true', default=False, help="Parse and index Python dictionaries.") args = parser.parse_args() mapper = JacksonObjectMapper() start = time.time() print(f'input: {args.input}') print(f'index: {args.index}') print(f'threads: {args.threads}') print(f'batch size: {args.batch_size}') print(f'index raw? {args.raw}') batch = [] indexer = LuceneIndexer(args.index, threads=args.threads) cnt = 0 batch_cnt = 0 for file in os.listdir(args.input): if not file.endswith('gz'): continue with gzip.open(os.path.join(args.input, file), 'r') as f: for line in f: if args.raw: batch.append(line.decode()) elif args.dict: obj = json.loads(line.decode()) batch.append({'id': obj['id'], 'contents': obj['contents']}) else: obj = json.loads(line.decode()) batch.append(mapper.createObjectNode().put('id', obj['id']).put('contents', obj['contents'])) cnt += 1 if len(batch) == args.batch_size: if args.raw: indexer.add_batch_raw(batch) elif args.dict: indexer.add_batch_dict(batch) else: indexer.add_batch_json(batch) batch = [] batch_cnt += 1 if cnt % 100000 == 0: cur = time.time() print(f'{cnt} docs indexed, {batch_cnt} batches, {cnt/(cur - start):.0f} docs/s') # Remember to add the final batch. if args.raw: indexer.add_batch_raw(batch) elif args.dict: indexer.add_batch_dict(batch) else: indexer.add_batch_json(batch) indexer.close() end = time.time() print(f'Total {cnt} docs indexed in {end - start:.0f}s, {cnt/(end - start):.0f} docs/s')