gewei20's picture
Create app.py
67add1d verified
# app.py
import os
import threading
from functools import wraps
import google.generativeai as genai
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
from dotenv import load_dotenv
import chromadb
# 从您的核心逻辑文件中导入类
from app_chromadb import MarkdownKnowledgeBase
# --- 初始化与配置 ---
load_dotenv()
app = Flask(__name__, static_folder='.', static_url_path='')
CORS(app)
# --- API 密钥认证配置 ---
VALID_API_KEYS_STR = os.environ.get("KNOWLEDGE_BASE_API_KEYS", "")
VALID_API_KEYS = {key.strip() for key in VALID_API_KEYS_STR.split(',') if key.strip()}
if not VALID_API_KEYS:
print("⚠️ 警告: 未配置 KNOWLEDGE_BASE_API_KEYS。API 将对所有人开放!")
# --- ChromaDB, Gemini, SiliconFlow 实例配置 ---
try:
CHROMA_DATA_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "chroma_db")
COLLECTION_NAME = "markdown_knowledge_base_m3"
chroma_client = chromadb.PersistentClient(path=CHROMA_DATA_PATH)
collection = chroma_client.get_or_create_collection(name=COLLECTION_NAME)
print(f"✅ ChromaDB 客户端已连接,数据存储在 '{CHROMA_DATA_PATH}'")
except Exception as e:
chroma_client = None
collection = None
print(f"❌ 初始化 ChromaDB 失败: {e}")
try:
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
print("✅ Gemini API 已配置。")
except Exception as e:
gemini_model = None
print(f"❌ Gemini API 配置失败: {e}")
try:
SF_API_TOKEN = os.environ.get("SILICONFLOW_API_TOKEN")
kb_instance = MarkdownKnowledgeBase(api_token=SF_API_TOKEN, chroma_collection=collection)
print("✅ SiliconFlow 与知识库实例已配置。")
except Exception as e:
kb_instance = None
print(f"❌ 知识库实例配置失败: {e}")
kb_status = { "is_building": False }
# --- API 密钥认证装饰器 ---
def require_api_key(f):
@wraps(f)
def decorated_function(*args, **kwargs):
if not VALID_API_KEYS: return f(*args, **kwargs)
api_key = request.headers.get('X-API-Key')
if api_key and api_key in VALID_API_KEYS:
return f(*args, **kwargs)
else:
return jsonify({"error": "授权失败。请提供有效'X-API-Key'请求头。"}), 403
return decorated_function
# --- 前端页面路由 ---
@app.route('/')
def serve_index():
return send_from_directory('.', 'index.html')
# --- API 端点 ---
@app.route('/status', methods=['GET'])
def get_status():
if collection:
kb_status['total_items'] = collection.count()
kb_status['is_built'] = kb_status['total_items'] > 0
if not kb_status['is_building']:
kb_status['message'] = f"知识库已就绪,共有 {kb_status['total_items']} 个条目。"
else:
kb_status['message'] = "ChromaDB 未连接。"
return jsonify(kb_status)
@app.route('/build', methods=['POST'])
@require_api_key
def build_knowledge_base():
if kb_status['is_building']:
return jsonify({"error": "知识库已在构建中,请稍后。"}), 409
if not kb_instance:
return jsonify({"error": "知识库实例未初始化,无法构建。"}), 500
data = request.get_json()
clear_existing = data.get('clear_existing', False)
build_params = {
'folder_path': data.get('folder_path'),
'chunk_size': data.get('chunk_size', 4096),
'overlap': data.get('overlap', 400),
'max_files': data.get('max_files', 500),
'sample_mode': data.get('sample_mode', 'largest')
}
def build_in_background():
global kb_status, collection
kb_status['is_building'] = True
kb_status['message'] = "构建任务开始..."
try:
if clear_existing and chroma_client:
print(f"正在清空现有集合: {COLLECTION_NAME}")
chroma_client.delete_collection(name=COLLECTION_NAME)
collection = chroma_client.get_or_create_collection(name=COLLECTION_NAME)
kb_instance.collection = collection
print("集合已清空并重建。")
kb_instance.build_knowledge_base(**build_params)
kb_status['message'] = f"构建完成!知识库现有 {collection.count()} 个条目。"
except Exception as e:
kb_status['message'] = f"构建时出错: {e}"
print(f"Error during build: {e}")
finally:
kb_status['is_building'] = False
thread = threading.Thread(target=build_in_background)
thread.start()
return jsonify({"message": "知识库构建任务已在后台启动。"}), 202
@app.route('/search', methods=['GET'])
@require_api_key
def search_in_kb():
if not (collection and collection.count() > 0):
return jsonify({"error": "知识库为空,请先构建。"}), 400
if not kb_instance:
return jsonify({"error": "知识库实例未初始化,无法搜索。"}), 500
query = request.args.get('query')
top_k = request.args.get('top_k', default=5, type=int)
if not query:
return jsonify({"error": "必须提供 'query' 参数"}), 400
try:
results = kb_instance.search(query, top_k=top_k)
return jsonify(results)
except Exception as e:
return jsonify({"error": f"搜索时发生错误: {e}"}), 500
@app.route('/summarize', methods=['POST'])
@require_api_key
def summarize_results():
if not gemini_model:
return jsonify({"error": "Gemini API 未配置或初始化失败。"}), 500
data = request.get_json()
query = data.get('query')
search_results = data.get('results')
if not query or not search_results:
return jsonify({"error": "必须提供查询和搜索结果。"}), 400
context = "\n\n---\n\n".join([item['content'] for item in search_results])
prompt = f"""
根据以下本地知识库中搜索到的内容,请用清晰、简洁的中文直接回答用户的问题。
如果内容不足以回答,请说明现有信息无法直接回答。
用户问题: "{query}"
搜索到的内容:
---
{context}
---
你的回答:
"""
try:
print(f"正在向 Gemini 模型 '{gemini_model.model_name}' 发送请求...")
response = gemini_model.generate_content(prompt)
summary = response.text
return jsonify({"summary": summary})
except Exception as e:
print(f"调用 Gemini API 时出错: {e}")
return jsonify({"error": f"调用 AI 服务时出错: {e}"}), 500
if __name__ == '__main__':
print("知识库后端服务 (最终版) 启动...")
print("✅ 服务已启动!请在浏览器中打开 http://127.0.0.1:5000")
# 使用生产级服务器时应移除 debug=False
app.run(host='0.0.0.0', port=5000, debug=False)