Spaces:
Running
Running
# app_chromadb.py | |
# 这个文件只定义类和方法,它是一个被 app.py 调用的“模块”。 | |
import os | |
import requests | |
import hashlib | |
from pathlib import Path | |
from typing import List, Dict | |
import time | |
from datetime import datetime | |
import uuid | |
class MarkdownKnowledgeBase: | |
""" | |
负责处理 Markdown 文件、与 SiliconFlow API 交互以获取向量, | |
并将最终数据存入 ChromaDB 的核心类。 | |
""" | |
def __init__(self, api_token: str, chroma_collection, base_url: str = "https://api.siliconflow.cn/v1"): | |
self.api_token = api_token | |
self.base_url = base_url | |
self.headers = { | |
"Authorization": f"Bearer {api_token}", | |
"Content-Type": "application/json" | |
} | |
self.collection = chroma_collection | |
def get_embeddings(self, texts: List[str], model: str = "BAAI/bge-m3") -> List[List[float]]: | |
""" | |
调用 SiliconFlow API 获取文本的嵌入向量。 | |
""" | |
url = f"{self.base_url}/embeddings" | |
embeddings = [] | |
batch_size = 32 | |
total_batches = (len(texts) + batch_size - 1) // batch_size | |
for batch_idx in range(0, len(texts), batch_size): | |
batch = texts[batch_idx:batch_idx + batch_size] | |
current_batch = batch_idx // batch_size + 1 | |
print(f"处理批次 {current_batch}/{total_batches} ({len(batch)} 个文本)") | |
payload = {"model": model, "input": batch, "encoding_format": "float"} | |
max_retries = 3 | |
for attempt in range(max_retries): | |
try: | |
response = requests.post(url, json=payload, headers=self.headers, timeout=60) | |
response.raise_for_status() | |
result = response.json() | |
if 'data' in result: | |
embeddings.extend([item['embedding'] for item in result['data']]) | |
break | |
else: | |
if attempt == max_retries - 1: embeddings.extend([[] for _ in batch]) | |
except requests.exceptions.RequestException as e: | |
print(f" ✗ 请求失败 (尝试 {attempt + 1}/{max_retries}): {e}") | |
if attempt == max_retries - 1: embeddings.extend([[] for _ in batch]) | |
time.sleep(0.1) | |
return embeddings | |
def build_knowledge_base(self, folder_path: str, chunk_size: int = 4096, overlap: int = 400, | |
max_files: int = None, sample_mode: str = "random"): | |
""" | |
扫描、分块、向量化并最终将数据存入 ChromaDB。 | |
""" | |
print("扫描文件并生成文本块...") | |
md_files = self._scan_files(folder_path) | |
if max_files and len(md_files) > max_files: | |
md_files = self._sample_files(md_files, max_files, sample_mode) | |
all_chunks, all_metadatas = [], [] | |
for file_path in md_files: | |
file_info = self._read_content(file_path) | |
if not file_info or len(file_info['content'].strip()) < 50: | |
continue | |
chunks = self._chunk_text(file_info['content'], chunk_size, overlap) | |
for j, chunk in enumerate(chunks): | |
if len(chunk.strip()) > 20: | |
all_chunks.append(chunk) | |
all_metadatas.append({'file_name': file_info['file_name'], 'source': file_info['file_path']}) | |
if not all_chunks: | |
print("没有有效的文本块可供处理。") | |
return | |
print(f"总共生成 {len(all_chunks)} 个文本块,开始获取向量...") | |
embeddings = self.get_embeddings(all_chunks) | |
valid_indices = [i for i, emb in enumerate(embeddings) if emb] | |
if not valid_indices: | |
print("未能成功获取任何向量,无法添加到知识库。") | |
return | |
valid_embeddings = [embeddings[i] for i in valid_indices] | |
valid_chunks = [all_chunks[i] for i in valid_indices] | |
valid_metadatas = [all_metadatas[i] for i in valid_indices] | |
ids = [str(uuid.uuid4()) for _ in valid_chunks] | |
print(f"获取向量完成,正在将 {len(ids)} 个有效条目批量写入 ChromaDB...") | |
if ids: # 确保有内容可以添加 | |
self.collection.add( | |
embeddings=valid_embeddings, | |
documents=valid_chunks, | |
metadatas=valid_metadatas, | |
ids=ids | |
) | |
print("知识库构建并存入 ChromaDB 成功!") | |
def search(self, query: str, top_k: int = 5) -> List[Dict]: | |
""" | |
在 ChromaDB 中执行向量搜索。 | |
""" | |
print(f"在 ChromaDB 中搜索: '{query}'") | |
query_embedding = self.get_embeddings([query])[0] | |
if not query_embedding: | |
return [] | |
results = self.collection.query( | |
query_embeddings=[query_embedding], | |
n_results=top_k | |
) | |
formatted_results = [] | |
if results and results['ids'][0]: | |
for i in range(len(results['ids'][0])): | |
formatted_results.append({ | |
"id": results['ids'][0][i], | |
"content": results['documents'][0][i], | |
"metadata": results['metadatas'][0][i], | |
"distance": results['distances'][0][i] | |
}) | |
return formatted_results | |
# --- 私有辅助方法 --- | |
def _scan_files(self, folder_path: str) -> List[str]: | |
md_files = [] | |
folder = Path(folder_path) | |
if not folder.exists(): return [] | |
for md_file in folder.rglob("*.md"): | |
if md_file.is_file(): md_files.append(str(md_file.resolve())) | |
return md_files | |
def _read_content(self, file_path: str) -> Dict: | |
try: | |
encodings = ['utf-8', 'utf-8-sig', 'gbk', 'cp1252', 'latin1'] | |
content = None | |
for encoding in encodings: | |
try: | |
with open(file_path, 'r', encoding=encoding) as file: | |
content = file.read() | |
break | |
except UnicodeDecodeError: continue | |
if content is None: return None | |
return {'file_name': os.path.basename(file_path), 'content': content, 'file_path': file_path} | |
except Exception: | |
return None | |
def _sample_files(self, md_files: List[str], max_files: int, mode: str) -> List[str]: | |
if mode == "random": | |
import random | |
return random.sample(md_files, min(len(md_files), max_files)) | |
elif mode == "largest": | |
return sorted(md_files, key=lambda f: os.path.getsize(f) if os.path.exists(f) else 0, reverse=True)[:max_files] | |
elif mode == "recent": | |
return sorted(md_files, key=lambda f: os.path.getmtime(f) if os.path.exists(f) else 0, reverse=True)[:max_files] | |
return md_files[:max_files] | |
def _chunk_text(self, text: str, chunk_size: int, overlap: int) -> List[str]: | |
if len(text) <= chunk_size: return [text] | |
chunks = [] | |
start = 0 | |
while start < len(text): | |
end = start + chunk_size | |
chunk = text[start:end] | |
chunks.append(chunk) | |
start += chunk_size - overlap | |
return chunks | |