smart-web-crawler / app_chromadb.py
gewei20's picture
Create app_chromadb.py
4b03607 verified
# app_chromadb.py
# 这个文件只定义类和方法,它是一个被 app.py 调用的“模块”。
import os
import requests
import hashlib
from pathlib import Path
from typing import List, Dict
import time
from datetime import datetime
import uuid
class MarkdownKnowledgeBase:
"""
负责处理 Markdown 文件、与 SiliconFlow API 交互以获取向量,
并将最终数据存入 ChromaDB 的核心类。
"""
def __init__(self, api_token: str, chroma_collection, base_url: str = "https://api.siliconflow.cn/v1"):
self.api_token = api_token
self.base_url = base_url
self.headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json"
}
self.collection = chroma_collection
def get_embeddings(self, texts: List[str], model: str = "BAAI/bge-m3") -> List[List[float]]:
"""
调用 SiliconFlow API 获取文本的嵌入向量。
"""
url = f"{self.base_url}/embeddings"
embeddings = []
batch_size = 32
total_batches = (len(texts) + batch_size - 1) // batch_size
for batch_idx in range(0, len(texts), batch_size):
batch = texts[batch_idx:batch_idx + batch_size]
current_batch = batch_idx // batch_size + 1
print(f"处理批次 {current_batch}/{total_batches} ({len(batch)} 个文本)")
payload = {"model": model, "input": batch, "encoding_format": "float"}
max_retries = 3
for attempt in range(max_retries):
try:
response = requests.post(url, json=payload, headers=self.headers, timeout=60)
response.raise_for_status()
result = response.json()
if 'data' in result:
embeddings.extend([item['embedding'] for item in result['data']])
break
else:
if attempt == max_retries - 1: embeddings.extend([[] for _ in batch])
except requests.exceptions.RequestException as e:
print(f" ✗ 请求失败 (尝试 {attempt + 1}/{max_retries}): {e}")
if attempt == max_retries - 1: embeddings.extend([[] for _ in batch])
time.sleep(0.1)
return embeddings
def build_knowledge_base(self, folder_path: str, chunk_size: int = 4096, overlap: int = 400,
max_files: int = None, sample_mode: str = "random"):
"""
扫描、分块、向量化并最终将数据存入 ChromaDB。
"""
print("扫描文件并生成文本块...")
md_files = self._scan_files(folder_path)
if max_files and len(md_files) > max_files:
md_files = self._sample_files(md_files, max_files, sample_mode)
all_chunks, all_metadatas = [], []
for file_path in md_files:
file_info = self._read_content(file_path)
if not file_info or len(file_info['content'].strip()) < 50:
continue
chunks = self._chunk_text(file_info['content'], chunk_size, overlap)
for j, chunk in enumerate(chunks):
if len(chunk.strip()) > 20:
all_chunks.append(chunk)
all_metadatas.append({'file_name': file_info['file_name'], 'source': file_info['file_path']})
if not all_chunks:
print("没有有效的文本块可供处理。")
return
print(f"总共生成 {len(all_chunks)} 个文本块,开始获取向量...")
embeddings = self.get_embeddings(all_chunks)
valid_indices = [i for i, emb in enumerate(embeddings) if emb]
if not valid_indices:
print("未能成功获取任何向量,无法添加到知识库。")
return
valid_embeddings = [embeddings[i] for i in valid_indices]
valid_chunks = [all_chunks[i] for i in valid_indices]
valid_metadatas = [all_metadatas[i] for i in valid_indices]
ids = [str(uuid.uuid4()) for _ in valid_chunks]
print(f"获取向量完成,正在将 {len(ids)} 个有效条目批量写入 ChromaDB...")
if ids: # 确保有内容可以添加
self.collection.add(
embeddings=valid_embeddings,
documents=valid_chunks,
metadatas=valid_metadatas,
ids=ids
)
print("知识库构建并存入 ChromaDB 成功!")
def search(self, query: str, top_k: int = 5) -> List[Dict]:
"""
在 ChromaDB 中执行向量搜索。
"""
print(f"在 ChromaDB 中搜索: '{query}'")
query_embedding = self.get_embeddings([query])[0]
if not query_embedding:
return []
results = self.collection.query(
query_embeddings=[query_embedding],
n_results=top_k
)
formatted_results = []
if results and results['ids'][0]:
for i in range(len(results['ids'][0])):
formatted_results.append({
"id": results['ids'][0][i],
"content": results['documents'][0][i],
"metadata": results['metadatas'][0][i],
"distance": results['distances'][0][i]
})
return formatted_results
# --- 私有辅助方法 ---
def _scan_files(self, folder_path: str) -> List[str]:
md_files = []
folder = Path(folder_path)
if not folder.exists(): return []
for md_file in folder.rglob("*.md"):
if md_file.is_file(): md_files.append(str(md_file.resolve()))
return md_files
def _read_content(self, file_path: str) -> Dict:
try:
encodings = ['utf-8', 'utf-8-sig', 'gbk', 'cp1252', 'latin1']
content = None
for encoding in encodings:
try:
with open(file_path, 'r', encoding=encoding) as file:
content = file.read()
break
except UnicodeDecodeError: continue
if content is None: return None
return {'file_name': os.path.basename(file_path), 'content': content, 'file_path': file_path}
except Exception:
return None
def _sample_files(self, md_files: List[str], max_files: int, mode: str) -> List[str]:
if mode == "random":
import random
return random.sample(md_files, min(len(md_files), max_files))
elif mode == "largest":
return sorted(md_files, key=lambda f: os.path.getsize(f) if os.path.exists(f) else 0, reverse=True)[:max_files]
elif mode == "recent":
return sorted(md_files, key=lambda f: os.path.getmtime(f) if os.path.exists(f) else 0, reverse=True)[:max_files]
return md_files[:max_files]
def _chunk_text(self, text: str, chunk_size: int, overlap: int) -> List[str]:
if len(text) <= chunk_size: return [text]
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
chunk = text[start:end]
chunks.append(chunk)
start += chunk_size - overlap
return chunks