# md_knowledge_base_v1.py import os import json import requests import hashlib from pathlib import Path from typing import List, Dict, Optional import time from datetime import datetime class MarkdownKnowledgeBase: def __init__(self, api_token: str, base_url: str = "https://api.siliconflow.cn/v1"): """ 初始化知识库构建器 Args: api_token: SiliconFlow API token base_url: API 基础URL """ self.api_token = api_token self.base_url = base_url self.headers = { "Authorization": f"Bearer {api_token}", "Content-Type": "application/json" } self.knowledge_base = [] def scan_markdown_files(self, folder_path: str) -> List[str]: # ... (此函数未改变) md_files = [] folder = Path(folder_path) if not folder.exists(): raise FileNotFoundError(f"文件夹不存在: {folder_path}") try: for md_file in folder.rglob("*.md"): if md_file.is_file(): file_path = str(md_file.resolve()) try: if os.path.exists(file_path) and os.path.isfile(file_path): md_files.append(file_path) else: print(f"跳过无法访问的文件: {file_path}") except Exception as e: print(f"跳过问题文件: {md_file} - {e}") continue except Exception as e: print(f"扫描文件夹时出错: {e}") print(f"找到 {len(md_files)} 个可访问的 Markdown 文件") return md_files def read_markdown_content(self, file_path: str) -> Dict: # ... (此函数未改变) try: file_path = os.path.normpath(file_path) if not os.path.exists(file_path): print(f"文件不存在: {file_path}") return None encodings = ['utf-8', 'utf-8-sig', 'gbk', 'cp1252', 'latin1'] content = None used_encoding = None for encoding in encodings: try: with open(file_path, 'r', encoding=encoding) as file: content = file.read() used_encoding = encoding break except UnicodeDecodeError: continue except Exception as e: print(f"编码 {encoding} 读取失败: {e}") continue if content is None: print(f"无法读取文件 {file_path}: 所有编码都失败") return None file_hash = hashlib.md5(content.encode('utf-8')).hexdigest() return { 'file_path': file_path, 'file_name': os.path.basename(file_path), 'content': content, 'hash': file_hash, 'size': len(content), 'encoding': used_encoding, 'modified_time': datetime.fromtimestamp(os.path.getmtime(file_path)).isoformat() } except Exception as e: print(f"读取文件失败 {file_path}: {e}") return None def chunk_text(self, text: str, chunk_size: int = 4096, overlap: int = 400) -> List[str]: # ... (默认参数已更新以匹配bge-m3) if len(text) <= chunk_size: return [text] chunks = [] start = 0 while start < len(text): end = start + chunk_size if end < len(text): for separator in ['\n\n', '。', '\n', ' ']: split_pos = text.rfind(separator, start, end) if split_pos > start: end = split_pos + len(separator) break chunk = text[start:end].strip() if chunk: chunks.append(chunk) start = max(start + 1, end - overlap) return chunks def get_embeddings(self, texts: List[str], model: str = "BAAI/bge-m3") -> List[List[float]]: """ 获取文本向量 Args: texts: 文本列表 model: 嵌入模型名称 - **已更新为 bge-m3** Returns: 向量列表 """ url = f"{self.base_url}/embeddings" embeddings = [] # **优化**: 增加批处理大小以提高效率,并减少等待时间 batch_size = 32 total_batches = (len(texts) + batch_size - 1) // batch_size print(f"开始处理 {len(texts)} 个文本块,分为 {total_batches} 批") for batch_idx in range(0, len(texts), batch_size): batch = texts[batch_idx:batch_idx + batch_size] current_batch = batch_idx // batch_size + 1 print(f"处理批次 {current_batch}/{total_batches} ({len(batch)} 个文本)") payload = {"model": model, "input": batch, "encoding_format": "float"} max_retries = 3 for attempt in range(max_retries): try: response = requests.post(url, json=payload, headers=self.headers, timeout=60) # 增加超时 response.raise_for_status() result = response.json() if 'data' in result: batch_embeddings = [item['embedding'] for item in result['data']] embeddings.extend(batch_embeddings) print(f" ✓ 成功获取 {len(batch_embeddings)} 个向量") break else: print(f" ✗ API 返回格式异常: {result}") embeddings.extend([[] for _ in batch]) break except requests.exceptions.RequestException as e: print(f" ✗ 请求失败 (尝试 {attempt + 1}/{max_retries}): {e}") if attempt == max_retries - 1: embeddings.extend([[] for _ in batch]) if attempt < max_retries - 1: time.sleep(2 ** attempt) # **优化**: 缩短请求间隔 time.sleep(0.1) print(f"向量生成完成: {len([e for e in embeddings if e])} 成功, {len([e for e in embeddings if not e])} 失败") return embeddings def rerank_documents(self, query: str, documents: List[str], model: str = "BAAI/bge-reranker-v2-m3", top_n: int = 10) -> Dict: """ 对文档进行重排 - **已更新为 bge-reranker-v2-m3** """ url = f"{self.base_url}/rerank" payload = { "model": model, "query": query, "documents": documents, "top_n": min(top_n, len(documents)), "return_documents": True } try: response = requests.post(url, json=payload, headers=self.headers) response.raise_for_status() return response.json() except Exception as e: print(f"重排失败: {e}") return {"results": []} def build_knowledge_base(self, folder_path: str, chunk_size: int = 4096, overlap: int = 400, max_files: int = None, sample_mode: str = "random"): # ... (此函数未改变逻辑, 但默认参数已更新) print("开始构建知识库...") md_files = self.scan_markdown_files(folder_path) if not md_files: print("没有找到可处理的 Markdown 文件") return if max_files and len(md_files) > max_files: print(f"文件数量过多({len(md_files)}),采用{sample_mode}策略选择{max_files}个文件") if sample_mode == "random": import random md_files = random.sample(md_files, max_files) elif sample_mode == "largest": file_sizes = sorted([(fp, os.path.getsize(fp)) for fp in md_files], key=lambda x: x[1], reverse=True) md_files = [fp for fp, _ in file_sizes[:max_files]] elif sample_mode == "recent": file_times = sorted([(fp, os.path.getmtime(fp)) for fp in md_files], key=lambda x: x[1], reverse=True) md_files = [fp for fp, _ in file_times[:max_files]] print(f"将处理 {len(md_files)} 个文件") all_chunks, chunk_metadata = [], [] processed_files, skipped_files = 0, 0 for i, file_path in enumerate(md_files, 1): print(f"处理文件 {i}/{len(md_files)}: {os.path.basename(file_path)}") file_info = self.read_markdown_content(file_path) if not file_info or len(file_info['content'].strip()) < 50: skipped_files += 1 continue chunks = self.chunk_text(file_info['content'], chunk_size, overlap) processed_files += 1 for j, chunk in enumerate(chunks): if len(chunk.strip()) > 20: all_chunks.append(chunk) chunk_metadata.append({'file_path': file_info['file_path'], 'file_name': file_info['file_name'], 'chunk_index': j, 'chunk_count': len(chunks), 'file_hash': file_info['hash']}) print(f"成功处理 {processed_files} 个文件,跳过 {skipped_files} 个文件") print(f"总共生成 {len(all_chunks)} 个文本块") if not all_chunks: print("没有有效的文本块,知识库构建失败") return print("开始生成向量...") embeddings = self.get_embeddings(all_chunks) self.knowledge_base = [] valid_embeddings = 0 for i, (chunk, embedding, metadata) in enumerate(zip(all_chunks, embeddings, chunk_metadata)): if embedding: self.knowledge_base.append({'id': len(self.knowledge_base), 'content': chunk, 'embedding': embedding, 'metadata': metadata}) valid_embeddings += 1 print(f"知识库构建完成! 有效向量: {valid_embeddings}, 总条目: {len(self.knowledge_base)}") def search(self, query: str, top_k: int = 5, use_rerank: bool = True) -> List[Dict]: # ... (此函数未改变) if not self.knowledge_base: return [] query_embedding = self.get_embeddings([query])[0] if not query_embedding: return [] import numpy as np query_embedding_norm = np.linalg.norm(query_embedding) if query_embedding_norm == 0: return [] similarities = [] for item in self.knowledge_base: if not item['embedding']: similarities.append(0) continue item_embedding_norm = np.linalg.norm(item['embedding']) if item_embedding_norm == 0: similarities.append(0) else: similarity = np.dot(query_embedding, item['embedding']) / (query_embedding_norm * item_embedding_norm) similarities.append(similarity) top_results_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:min(top_k * 3, len(similarities))] if use_rerank and len(top_results_indices) > 1: documents_to_rerank = [self.knowledge_base[i]['content'] for i in top_results_indices] rerank_result = self.rerank_documents(query, documents_to_rerank, top_n=top_k) if rerank_result.get('results'): final_results = [] for res in rerank_result['results']: original_index = top_results_indices[res['index']] item = self.knowledge_base[original_index].copy() item['relevance_score'] = res['relevance_score'] final_results.append(item) return final_results[:top_k] return [self.knowledge_base[i] for i in top_results_indices[:top_k]] def save_knowledge_base(self, output_path: str): with open(output_path, 'w', encoding='utf-8') as f: json.dump(self.knowledge_base, f, ensure_ascii=False, indent=2) print(f"知识库已保存到: {output_path}") def load_knowledge_base(self, input_path: str): with open(input_path, 'r', encoding='utf-8') as f: self.knowledge_base = json.load(f) print(f"知识库已从 {input_path} 加载,包含 {len(self.knowledge_base)} 个条目")