Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import subprocess | |
import signal | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
import gradio as gr | |
import tempfile | |
from huggingface_hub import HfApi, ModelCard, whoami | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from pathlib import Path | |
from textwrap import dedent | |
from apscheduler.schedulers.background import BackgroundScheduler | |
# used for restarting the space | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" | |
# escape HTML for logging | |
def escape(s: str) -> str: | |
s = s.replace("&", "&") # Must be done first! | |
s = s.replace("<", "<") | |
s = s.replace(">", ">") | |
s = s.replace('"', """) | |
s = s.replace("\n", "<br/>") | |
return s | |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): | |
imatrix_command = [ | |
"./llama.cpp/llama-imatrix", | |
"-m", model_path, | |
"-f", train_data_path, | |
"-ngl", "99", | |
"--output-frequency", "10", | |
"-o", output_path, | |
] | |
if not os.path.isfile(model_path): | |
raise Exception(f"Model file not found: {model_path}") | |
print("Running imatrix command...") | |
process = subprocess.Popen(imatrix_command, shell=False) | |
try: | |
process.wait(timeout=60) # added wait | |
except subprocess.TimeoutExpired: | |
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") | |
process.send_signal(signal.SIGINT) | |
try: | |
process.wait(timeout=5) # grace period | |
except subprocess.TimeoutExpired: | |
print("Imatrix proc still didn't term. Forecfully terming process...") | |
process.kill() | |
print("Importance matrix generation completed.") | |
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None): | |
print(f"Model path: {model_path}") | |
print(f"Output dir: {outdir}") | |
if oauth_token.token is None: | |
raise ValueError("You have to be logged in.") | |
split_cmd = [ | |
"./llama.cpp/llama-gguf-split", | |
"--split", | |
] | |
if split_max_size: | |
split_cmd.append("--split-max-size") | |
split_cmd.append(split_max_size) | |
else: | |
split_cmd.append("--split-max-tensors") | |
split_cmd.append(str(split_max_tensors)) | |
# args for output | |
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension | |
split_cmd.append(model_path) | |
split_cmd.append(model_path_prefix) | |
print(f"Split command: {split_cmd}") | |
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) | |
print(f"Split command stdout: {result.stdout}") | |
print(f"Split command stderr: {result.stderr}") | |
if result.returncode != 0: | |
stderr_str = result.stderr.decode("utf-8") | |
raise Exception(f"Error splitting the model: {stderr_str}") | |
print("Model split successfully!") | |
# remove the original model file if needed | |
if os.path.exists(model_path): | |
os.remove(model_path) | |
model_file_prefix = model_path_prefix.split('/')[-1] | |
print(f"Model file name prefix: {model_file_prefix}") | |
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")] | |
if sharded_model_files: | |
print(f"Sharded model files: {sharded_model_files}") | |
api = HfApi(token=oauth_token.token) | |
for file in sharded_model_files: | |
file_path = os.path.join(outdir, file) | |
print(f"Uploading file: {file_path}") | |
try: | |
api.upload_file( | |
path_or_fileobj=file_path, | |
path_in_repo=file, | |
repo_id=repo_id, | |
) | |
except Exception as e: | |
raise Exception(f"Error uploading file {file_path}: {e}") | |
else: | |
raise Exception("No sharded files found.") | |
print("Sharded model has been uploaded successfully!") | |
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None): | |
if oauth_token is None or oauth_token.token is None: | |
raise ValueError("You must be logged in to use GGUF-my-repo") | |
model_name = model_id.split('/')[-1] | |
try: | |
api = HfApi(token=oauth_token.token) | |
dl_pattern = ["*.md", "*.json", "*.model"] | |
pattern = ( | |
"*.safetensors" | |
if any( | |
file.path.endswith(".safetensors") | |
for file in api.list_repo_tree( | |
repo_id=model_id, | |
recursive=True, | |
) | |
) | |
else "*.bin" | |
) | |
dl_pattern += [pattern] | |
if not os.path.exists("downloads"): | |
os.makedirs("downloads") | |
if not os.path.exists("outputs"): | |
os.makedirs("outputs") | |
with tempfile.TemporaryDirectory(dir="outputs") as outdir: | |
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf") | |
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: | |
# Keep the model name as the dirname so the model name metadata is populated correctly | |
local_dir = Path(tmpdir)/model_name | |
print(local_dir) | |
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
print("Model downloaded successfully!") | |
print(f"Current working directory: {os.getcwd()}") | |
print(f"Model directory contents: {os.listdir(local_dir)}") | |
config_dir = local_dir/"config.json" | |
adapter_config_dir = local_dir/"adapter_config.json" | |
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): | |
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.') | |
result = subprocess.run([ | |
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16 | |
], shell=False, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
stderr_str = result.stderr.decode("utf-8") | |
raise Exception(f"Error converting to fp16: {stderr_str}") | |
print("Model converted to fp16 successfully!") | |
print(f"Converted model path: {fp16}") | |
imatrix_path = Path(outdir)/"imatrix.dat" | |
if use_imatrix: | |
if train_data_file: | |
train_data_path = train_data_file.name | |
else: | |
train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset | |
print(f"Training data file path: {train_data_path}") | |
if not os.path.isfile(train_data_path): | |
raise Exception(f"Training data file not found: {train_data_path}") | |
generate_importance_matrix(fp16, train_data_path, imatrix_path) | |
else: | |
print("Not using imatrix quantization.") | |
# Quantize the model | |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf" | |
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name) | |
if use_imatrix: | |
quantise_ggml = [ | |
"./llama.cpp/llama-quantize", | |
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method | |
] | |
else: | |
quantise_ggml = [ | |
"./llama.cpp/llama-quantize", | |
fp16, quantized_gguf_path, q_method | |
] | |
result = subprocess.run(quantise_ggml, shell=False, capture_output=True) | |
if result.returncode != 0: | |
stderr_str = result.stderr.decode("utf-8") | |
raise Exception(f"Error quantizing: {stderr_str}") | |
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!") | |
print(f"Quantized model path: {quantized_gguf_path}") | |
# Create empty repo | |
username = whoami(oauth_token.token)["name"] | |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo) | |
new_repo_id = new_repo_url.repo_id | |
print("Repo created successfully!", new_repo_url) | |
try: | |
card = ModelCard.load(model_id, token=oauth_token.token) | |
except: | |
card = ModelCard("") | |
if card.data.tags is None: | |
card.data.tags = [] | |
card.data.tags.append("llama-cpp") | |
card.data.tags.append("gguf-my-repo") | |
card.data.base_model = model_id | |
card.text = dedent( | |
f""" | |
# {new_repo_id} | |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. | |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. | |
## Use with llama.cpp | |
Install llama.cpp through brew (works on Mac and Linux) | |
```bash | |
brew install llama.cpp | |
``` | |
Invoke the llama.cpp server or the CLI. | |
### CLI: | |
```bash | |
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" | |
``` | |
### Server: | |
```bash | |
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 | |
``` | |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. | |
Step 1: Clone llama.cpp from GitHub. | |
``` | |
git clone https://github.com/ggerganov/llama.cpp | |
``` | |
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). | |
``` | |
cd llama.cpp && LLAMA_CURL=1 make | |
``` | |
Step 3: Run inference through the main binary. | |
``` | |
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" | |
``` | |
or | |
``` | |
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 | |
``` | |
""" | |
) | |
readme_path = Path(outdir)/"README.md" | |
card.save(readme_path) | |
if split_model: | |
split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size) | |
else: | |
try: | |
print(f"Uploading quantized model: {quantized_gguf_path}") | |
api.upload_file( | |
path_or_fileobj=quantized_gguf_path, | |
path_in_repo=quantized_gguf_name, | |
repo_id=new_repo_id, | |
) | |
except Exception as e: | |
raise Exception(f"Error uploading quantized model: {e}") | |
if os.path.isfile(imatrix_path): | |
try: | |
print(f"Uploading imatrix.dat: {imatrix_path}") | |
api.upload_file( | |
path_or_fileobj=imatrix_path, | |
path_in_repo="imatrix.dat", | |
repo_id=new_repo_id, | |
) | |
except Exception as e: | |
raise Exception(f"Error uploading imatrix.dat: {e}") | |
api.upload_file( | |
path_or_fileobj=readme_path, | |
path_in_repo="README.md", | |
repo_id=new_repo_id, | |
) | |
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!") | |
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here | |
return ( | |
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>', | |
"llama.png", | |
) | |
except Exception as e: | |
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png") | |
css="""/* Custom CSS to allow scrolling */ | |
.gradio-container {overflow-y: auto;} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("You must be logged in to use GGUF-my-repo.") | |
gr.LoginButton(min_width=250) | |
model_id = HuggingfaceHubSearch( | |
label="Hub Model ID", | |
placeholder="Search for model id on Huggingface", | |
search_type="model", | |
) | |
q_method = gr.Dropdown( | |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], | |
label="Quantization Method", | |
info="GGML quantization type", | |
value="Q4_K_M", | |
filterable=False, | |
visible=True | |
) | |
imatrix_q_method = gr.Dropdown( | |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], | |
label="Imatrix Quantization Method", | |
info="GGML imatrix quants type", | |
value="IQ4_NL", | |
filterable=False, | |
visible=False | |
) | |
use_imatrix = gr.Checkbox( | |
value=False, | |
label="Use Imatrix Quantization", | |
info="Use importance matrix for quantization." | |
) | |
private_repo = gr.Checkbox( | |
value=False, | |
label="Private Repo", | |
info="Create a private repo under your username." | |
) | |
train_data_file = gr.File( | |
label="Training Data File", | |
file_types=["txt"], | |
visible=False | |
) | |
split_model = gr.Checkbox( | |
value=False, | |
label="Split Model", | |
info="Shard the model using gguf-split." | |
) | |
split_max_tensors = gr.Number( | |
value=256, | |
label="Max Tensors per File", | |
info="Maximum number of tensors per file when splitting model.", | |
visible=False | |
) | |
split_max_size = gr.Textbox( | |
label="Max File Size", | |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", | |
visible=False | |
) | |
def update_visibility(use_imatrix): | |
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix) | |
use_imatrix.change( | |
fn=update_visibility, | |
inputs=use_imatrix, | |
outputs=[q_method, imatrix_q_method, train_data_file] | |
) | |
iface = gr.Interface( | |
fn=process_model, | |
inputs=[ | |
model_id, | |
q_method, | |
use_imatrix, | |
imatrix_q_method, | |
private_repo, | |
train_data_file, | |
split_model, | |
split_max_tensors, | |
split_max_size, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
gr.Image(show_label=False), | |
], | |
title="Create your own GGUF Quants, blazingly fast ⚡!", | |
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", | |
api_name=False | |
) | |
def update_split_visibility(split_model): | |
return gr.update(visible=split_model), gr.update(visible=split_model) | |
split_model.change( | |
fn=update_split_visibility, | |
inputs=split_model, | |
outputs=[split_max_tensors, split_max_size] | |
) | |
def restart_space(): | |
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=21600) | |
scheduler.start() | |
# Launch the interface | |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |