Update app.py
Browse files
app.py
CHANGED
|
@@ -91,26 +91,21 @@ def rag_process(query, k=2):
|
|
| 91 |
return "Invalid query. Please enter a valid question.", [], {}
|
| 92 |
|
| 93 |
start_time = time.perf_counter()
|
| 94 |
-
|
| 95 |
-
# Embed query
|
| 96 |
try:
|
| 97 |
query_embedding = embedder.encode([query], show_progress_bar=False)
|
| 98 |
embed_time = time.perf_counter() - start_time
|
| 99 |
except Exception as e:
|
| 100 |
return f"Error embedding query: {str(e)}", [], {}
|
| 101 |
|
| 102 |
-
# Retrieve FAQs
|
| 103 |
start_time = time.perf_counter()
|
| 104 |
distances, indices = index.search(query_embedding.astype(np.float32), k)
|
| 105 |
retrieved_faqs = faq_data.iloc[indices[0]][['question', 'answer']].to_dict('records')
|
| 106 |
retrieval_time = time.perf_counter() - start_time
|
| 107 |
|
| 108 |
-
# Generate response (rule-based for free tier)
|
| 109 |
start_time = time.perf_counter()
|
| 110 |
response = retrieved_faqs[0]['answer'] if retrieved_faqs else "Sorry, I couldn't find an answer."
|
| 111 |
generation_time = time.perf_counter() - start_time
|
| 112 |
|
| 113 |
-
# Metrics
|
| 114 |
metrics = {
|
| 115 |
'embed_time': embed_time * 1000,
|
| 116 |
'retrieval_time': retrieval_time * 1000,
|
|
@@ -159,7 +154,7 @@ def chat_interface(query):
|
|
| 159 |
f"(removed {cleanup_details['removed']} junk entries: "
|
| 160 |
f"{cleanup_details['nulls_removed']} nulls, "
|
| 161 |
f"{cleanup_details['duplicates_removed']} duplicates, "
|
| 162 |
-
f"{cleanup_details['short_removed']} short
|
| 163 |
f"{cleanup_details['malformed_removed']} malformed)"
|
| 164 |
)
|
| 165 |
|
|
|
|
| 91 |
return "Invalid query. Please enter a valid question.", [], {}
|
| 92 |
|
| 93 |
start_time = time.perf_counter()
|
|
|
|
|
|
|
| 94 |
try:
|
| 95 |
query_embedding = embedder.encode([query], show_progress_bar=False)
|
| 96 |
embed_time = time.perf_counter() - start_time
|
| 97 |
except Exception as e:
|
| 98 |
return f"Error embedding query: {str(e)}", [], {}
|
| 99 |
|
|
|
|
| 100 |
start_time = time.perf_counter()
|
| 101 |
distances, indices = index.search(query_embedding.astype(np.float32), k)
|
| 102 |
retrieved_faqs = faq_data.iloc[indices[0]][['question', 'answer']].to_dict('records')
|
| 103 |
retrieval_time = time.perf_counter() - start_time
|
| 104 |
|
|
|
|
| 105 |
start_time = time.perf_counter()
|
| 106 |
response = retrieved_faqs[0]['answer'] if retrieved_faqs else "Sorry, I couldn't find an answer."
|
| 107 |
generation_time = time.perf_counter() - start_time
|
| 108 |
|
|
|
|
| 109 |
metrics = {
|
| 110 |
'embed_time': embed_time * 1000,
|
| 111 |
'retrieval_time': retrieval_time * 1000,
|
|
|
|
| 154 |
f"(removed {cleanup_details['removed']} junk entries: "
|
| 155 |
f"{cleanup_details['nulls_removed']} nulls, "
|
| 156 |
f"{cleanup_details['duplicates_removed']} duplicates, "
|
| 157 |
+
f"{cleanup_details['short_removed']} short, "
|
| 158 |
f"{cleanup_details['malformed_removed']} malformed)"
|
| 159 |
)
|
| 160 |
|