File size: 10,001 Bytes
2ac1c2d
691ecd9
77948f7
7f54bbc
fb76e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0f666
87e2d43
7c75e1c
 
 
691ecd9
2ac1c2d
 
 
 
 
 
 
1e65bf3
 
2ac1c2d
 
 
 
f55e443
2ac1c2d
 
5cbb918
 
 
 
 
 
 
 
 
2ac1c2d
5cbb918
2ac1c2d
5cbb918
 
ba7a511
5cbb918
 
 
1e65bf3
2478e32
1e65bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbb918
 
1e65bf3
5cbb918
 
ba7a511
5cbb918
bc373eb
5cbb918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b8892
 
5cbb918
 
 
 
 
 
 
 
 
1e65bf3
 
 
 
 
 
 
 
 
 
2e2ddc1
 
1e65bf3
5cbb918
 
1e65bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbb918
1e65bf3
5cbb918
 
 
 
 
 
 
 
 
 
 
 
 
 
1e65bf3
 
5cbb918
 
 
1e65bf3
5cbb918
 
 
 
 
 
 
 
 
 
 
 
1e65bf3
5cbb918
1e65bf3
b8291ba
 
1e65bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbb918
1e65bf3
5cbb918
 
 
 
 
 
 
 
2ac1c2d
1e65bf3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import shlex
import spaces
import subprocess
def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
os.system("pip list | grep torch")
os.system('nvcc -V')
print("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")
os.system("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")

subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
import time
import uuid
import torch
import trimesh
import argparse
import numpy as np
import gradio as gr
from gradio_client import Client
from PIL import Image
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
    Step1X3DTexturePipeline,
)
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face


parser = argparse.ArgumentParser()
parser.add_argument(
    "--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m"
)
parser.add_argument(
    "--texture_model", type=str, default="Step1X-3D-Texture"
)
parser.add_argument("--cache_dir", type=str, default="cache")
args = parser.parse_args()

os.makedirs(args.cache_dir, exist_ok=True)

geometry_model = Step1X3DGeometryPipeline.from_pretrained(
    "stepfun-ai/Step1X-3D", subfolder=args.geometry_model
).to("cuda")

texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)

# Initialize text-to-image client
t2i_client = Client(os.getenv("H100_3D_URL")) 


def generate_image_from_text(prompt, height, width, steps, scales, seed):
    """Generate image from text using the external API"""
    try:
        result = t2i_client.predict(
            height=height,
            width=width,
            steps=steps,
            scales=scales,
            prompt=prompt,
            seed=seed if seed != -1 else None,
            api_name="/process_and_save_image"
        )
        # Result contains a dict with 'path' key pointing to the generated image
        if isinstance(result, dict) and 'path' in result:
            return result['path']
        elif isinstance(result, str):
            return result
        else:
            raise Exception("Unexpected result format from text-to-image API")
    except Exception as e:
        print(f"Error generating image from text: {e}")
        return None


def get_random_seed():
    """Get a random seed from the external API"""
    try:
        result = t2i_client.predict(api_name="/update_random_seed")
        return result
    except Exception as e:
        print(f"Error getting random seed: {e}")
        return -1


@spaces.GPU(duration=240)
def generate_3d_func(
    input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
):
    # geometry_model = geometry_model.to("cuda")
    if "Label" in args.geometry_model:
        symmetry_values = ["x", "asymmetry"]
        out = geometry_model(
            input_image_path,
            label={"symmetry": symmetry_values[int(symmetry)], "edge_type": edge_type},
            guidance_scale=float(guidance_scale),
            octree_resolution=384,
            max_facenum=int(max_facenum),
            num_inference_steps=int(inference_steps),
        )
    else:
        out = geometry_model(
            input_image_path,
            guidance_scale=float(guidance_scale),
            num_inference_steps=int(inference_steps),
            max_facenum=int(max_facenum),
        )

    save_name = str(uuid.uuid4())
    print(save_name)
    geometry_save_path = f"{args.cache_dir}/{save_name}.glb"
    geometry_mesh = out.mesh[0]
    geometry_mesh.export(geometry_save_path)

    geometry_mesh = remove_degenerate_face(geometry_mesh)
    geometry_mesh = reduce_face(geometry_mesh)
    textured_mesh = texture_model(input_image_path, geometry_mesh)
    textured_save_path = f"{args.cache_dir}/{save_name}-textured.glb"
    textured_mesh.export(textured_save_path)

    torch.cuda.empty_cache()
    print("Generate finish")
    return geometry_save_path, textured_save_path


def update_image_display(uploaded_image, generated_image):
    """Update the displayed image based on which source has content"""
    if generated_image is not None:
        return generated_image
    elif uploaded_image is not None:
        return uploaded_image
    else:
        return None


with gr.Blocks(title="3D-LLAMA V2") as demo:
    gr.Markdown("# 3D-LLAMA V2 with Step1X-3D")
    
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("## Image Input")
            with gr.Tab("Upload Image"):
                uploaded_image = gr.Image(label="Upload Image", type="filepath")
            
            with gr.Tab("Generate from Text"):
                text_prompt = gr.Textbox(label="Image Description", placeholder="Enter your image description here...")
                with gr.Row():
                    t2i_height = gr.Slider(label="Height", minimum=512, maximum=2048, value=1024, step=64)
                    t2i_width = gr.Slider(label="Width", minimum=512, maximum=2048, value=1024, step=64)
                with gr.Row():
                    t2i_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, value=8, step=1)
                    t2i_scales = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.5, step=0.5)
                with gr.Row():
                    t2i_seed = gr.Number(label="Seed (optional, -1 for random)", value=-1)
                    random_seed_btn = gr.Button("Get Random Seed", scale=0)
                generate_image_btn = gr.Button("Generate Image", variant="primary")
            
            # Display the current working image
            current_image = gr.Image(label="Current Image (for 3D generation)", type="filepath", interactive=False)
            generated_image_path = gr.State(value=None)
            
            gr.Markdown("## 3D Generation Settings")
            guidance_scale = gr.Number(label="3D Guidance Scale", value="7.5")
            inference_steps = gr.Slider(
                label="3D Inference Steps", minimum=1, maximum=100, value=50
            )
            max_facenum = gr.Number(label="Max Face Num", value="400000")
            symmetry = gr.Radio(
                choices=["symmetry", "asymmetry"],
                label="Symmetry Type",
                value="symmetry",
                type="index",
            )
            edge_type = gr.Radio(
                choices=["sharp", "normal", "smooth"],
                label="Edge Type",
                value="sharp",
                type="value",
            )
            btn_3d = gr.Button("Generate 3D", variant="primary")
            
        with gr.Column(scale=4):
            textured_preview = gr.Model3D(label="Textured", height=380)
            geometry_preview = gr.Model3D(label="Geometry", height=380)
            
        with gr.Column(scale=1):
            gr.Examples(
                examples=[
                    ["examples/images/000.png"],
                    ["examples/images/001.png"],
                    ["examples/images/004.png"],
                    ["examples/images/008.png"],
                    ["examples/images/028.png"],
                    ["examples/images/032.png"],
                    ["examples/images/061.png"],
                    ["examples/images/107.png"],
                ],
                inputs=[uploaded_image],
                cache_examples=False,
                label="Example Images"
            )

    # Event handlers
    def on_generate_image(prompt, height, width, steps, scales, seed):
        if not prompt:
            gr.Warning("Please enter a text prompt")
            return None, None
        
        generated_path = generate_image_from_text(prompt, height, width, steps, scales, seed)
        if generated_path:
            return generated_path, generated_path
        else:
            gr.Warning("Failed to generate image from text")
            return None, None
    
    def on_upload_image(image_path):
        return image_path
    
    def get_current_image(uploaded, generated):
        if generated is not None:
            return generated
        elif uploaded is not None:
            return uploaded
        else:
            return None
    
    # Connect event handlers
    generate_image_btn.click(
        on_generate_image,
        inputs=[text_prompt, t2i_height, t2i_width, t2i_steps, t2i_scales, t2i_seed],
        outputs=[generated_image_path, current_image]
    )
    
    random_seed_btn.click(
        get_random_seed,
        inputs=[],
        outputs=[t2i_seed]
    )
    
    uploaded_image.change(
        on_upload_image,
        inputs=[uploaded_image],
        outputs=[current_image]
    )
    
    btn_3d.click(
        lambda img, gs, is_, mf, sym, et: generate_3d_func(img, gs, is_, mf, sym, et) if img else (None, None),
        inputs=[
            current_image,
            guidance_scale,
            inference_steps,
            max_facenum,
            symmetry,
            edge_type,
        ],
        outputs=[geometry_preview, textured_preview],
    )

demo.launch(ssr_mode=False)