File size: 10,001 Bytes
2ac1c2d 691ecd9 77948f7 7f54bbc fb76e24 ec0f666 87e2d43 7c75e1c 691ecd9 2ac1c2d 1e65bf3 2ac1c2d f55e443 2ac1c2d 5cbb918 2ac1c2d 5cbb918 2ac1c2d 5cbb918 ba7a511 5cbb918 1e65bf3 2478e32 1e65bf3 5cbb918 1e65bf3 5cbb918 ba7a511 5cbb918 bc373eb 5cbb918 56b8892 5cbb918 1e65bf3 2e2ddc1 1e65bf3 5cbb918 1e65bf3 5cbb918 1e65bf3 5cbb918 1e65bf3 5cbb918 1e65bf3 5cbb918 1e65bf3 5cbb918 1e65bf3 b8291ba 1e65bf3 5cbb918 1e65bf3 5cbb918 2ac1c2d 1e65bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import shlex
import spaces
import subprocess
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
os.system("pip list | grep torch")
os.system('nvcc -V')
print("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")
os.system("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
import time
import uuid
import torch
import trimesh
import argparse
import numpy as np
import gradio as gr
from gradio_client import Client
from PIL import Image
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
Step1X3DTexturePipeline,
)
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face
parser = argparse.ArgumentParser()
parser.add_argument(
"--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m"
)
parser.add_argument(
"--texture_model", type=str, default="Step1X-3D-Texture"
)
parser.add_argument("--cache_dir", type=str, default="cache")
args = parser.parse_args()
os.makedirs(args.cache_dir, exist_ok=True)
geometry_model = Step1X3DGeometryPipeline.from_pretrained(
"stepfun-ai/Step1X-3D", subfolder=args.geometry_model
).to("cuda")
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
# Initialize text-to-image client
t2i_client = Client(os.getenv("H100_3D_URL"))
def generate_image_from_text(prompt, height, width, steps, scales, seed):
"""Generate image from text using the external API"""
try:
result = t2i_client.predict(
height=height,
width=width,
steps=steps,
scales=scales,
prompt=prompt,
seed=seed if seed != -1 else None,
api_name="/process_and_save_image"
)
# Result contains a dict with 'path' key pointing to the generated image
if isinstance(result, dict) and 'path' in result:
return result['path']
elif isinstance(result, str):
return result
else:
raise Exception("Unexpected result format from text-to-image API")
except Exception as e:
print(f"Error generating image from text: {e}")
return None
def get_random_seed():
"""Get a random seed from the external API"""
try:
result = t2i_client.predict(api_name="/update_random_seed")
return result
except Exception as e:
print(f"Error getting random seed: {e}")
return -1
@spaces.GPU(duration=240)
def generate_3d_func(
input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
):
# geometry_model = geometry_model.to("cuda")
if "Label" in args.geometry_model:
symmetry_values = ["x", "asymmetry"]
out = geometry_model(
input_image_path,
label={"symmetry": symmetry_values[int(symmetry)], "edge_type": edge_type},
guidance_scale=float(guidance_scale),
octree_resolution=384,
max_facenum=int(max_facenum),
num_inference_steps=int(inference_steps),
)
else:
out = geometry_model(
input_image_path,
guidance_scale=float(guidance_scale),
num_inference_steps=int(inference_steps),
max_facenum=int(max_facenum),
)
save_name = str(uuid.uuid4())
print(save_name)
geometry_save_path = f"{args.cache_dir}/{save_name}.glb"
geometry_mesh = out.mesh[0]
geometry_mesh.export(geometry_save_path)
geometry_mesh = remove_degenerate_face(geometry_mesh)
geometry_mesh = reduce_face(geometry_mesh)
textured_mesh = texture_model(input_image_path, geometry_mesh)
textured_save_path = f"{args.cache_dir}/{save_name}-textured.glb"
textured_mesh.export(textured_save_path)
torch.cuda.empty_cache()
print("Generate finish")
return geometry_save_path, textured_save_path
def update_image_display(uploaded_image, generated_image):
"""Update the displayed image based on which source has content"""
if generated_image is not None:
return generated_image
elif uploaded_image is not None:
return uploaded_image
else:
return None
with gr.Blocks(title="3D-LLAMA V2") as demo:
gr.Markdown("# 3D-LLAMA V2 with Step1X-3D")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Image Input")
with gr.Tab("Upload Image"):
uploaded_image = gr.Image(label="Upload Image", type="filepath")
with gr.Tab("Generate from Text"):
text_prompt = gr.Textbox(label="Image Description", placeholder="Enter your image description here...")
with gr.Row():
t2i_height = gr.Slider(label="Height", minimum=512, maximum=2048, value=1024, step=64)
t2i_width = gr.Slider(label="Width", minimum=512, maximum=2048, value=1024, step=64)
with gr.Row():
t2i_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, value=8, step=1)
t2i_scales = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.5, step=0.5)
with gr.Row():
t2i_seed = gr.Number(label="Seed (optional, -1 for random)", value=-1)
random_seed_btn = gr.Button("Get Random Seed", scale=0)
generate_image_btn = gr.Button("Generate Image", variant="primary")
# Display the current working image
current_image = gr.Image(label="Current Image (for 3D generation)", type="filepath", interactive=False)
generated_image_path = gr.State(value=None)
gr.Markdown("## 3D Generation Settings")
guidance_scale = gr.Number(label="3D Guidance Scale", value="7.5")
inference_steps = gr.Slider(
label="3D Inference Steps", minimum=1, maximum=100, value=50
)
max_facenum = gr.Number(label="Max Face Num", value="400000")
symmetry = gr.Radio(
choices=["symmetry", "asymmetry"],
label="Symmetry Type",
value="symmetry",
type="index",
)
edge_type = gr.Radio(
choices=["sharp", "normal", "smooth"],
label="Edge Type",
value="sharp",
type="value",
)
btn_3d = gr.Button("Generate 3D", variant="primary")
with gr.Column(scale=4):
textured_preview = gr.Model3D(label="Textured", height=380)
geometry_preview = gr.Model3D(label="Geometry", height=380)
with gr.Column(scale=1):
gr.Examples(
examples=[
["examples/images/000.png"],
["examples/images/001.png"],
["examples/images/004.png"],
["examples/images/008.png"],
["examples/images/028.png"],
["examples/images/032.png"],
["examples/images/061.png"],
["examples/images/107.png"],
],
inputs=[uploaded_image],
cache_examples=False,
label="Example Images"
)
# Event handlers
def on_generate_image(prompt, height, width, steps, scales, seed):
if not prompt:
gr.Warning("Please enter a text prompt")
return None, None
generated_path = generate_image_from_text(prompt, height, width, steps, scales, seed)
if generated_path:
return generated_path, generated_path
else:
gr.Warning("Failed to generate image from text")
return None, None
def on_upload_image(image_path):
return image_path
def get_current_image(uploaded, generated):
if generated is not None:
return generated
elif uploaded is not None:
return uploaded
else:
return None
# Connect event handlers
generate_image_btn.click(
on_generate_image,
inputs=[text_prompt, t2i_height, t2i_width, t2i_steps, t2i_scales, t2i_seed],
outputs=[generated_image_path, current_image]
)
random_seed_btn.click(
get_random_seed,
inputs=[],
outputs=[t2i_seed]
)
uploaded_image.change(
on_upload_image,
inputs=[uploaded_image],
outputs=[current_image]
)
btn_3d.click(
lambda img, gs, is_, mf, sym, et: generate_3d_func(img, gs, is_, mf, sym, et) if img else (None, None),
inputs=[
current_image,
guidance_scale,
inference_steps,
max_facenum,
symmetry,
edge_type,
],
outputs=[geometry_preview, textured_preview],
)
demo.launch(ssr_mode=False) |