Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 47,307 Bytes
bfd96c7 d4f44df b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 d4f44df b4107f4 bfd96c7 b4107f4 bfd96c7 5521c22 b4107f4 bfd96c7 b4107f4 d4f44df 46b6b20 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 1ea68f5 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 285f7e3 bfd96c7 b4107f4 bfd96c7 d4f44df bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 400ea45 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 3732818 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 b4107f4 bfd96c7 37c334b b4107f4 37c334b b4107f4 37c334b b4107f4 37c334b b4107f4 37c334b d4f44df 46b6b20 b4107f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
from fastapi import FastAPI, BackgroundTasks, UploadFile, File, Form, Request, Query
from fastapi.responses import HTMLResponse, JSONResponse, Response, RedirectResponse
from fastapi.staticfiles import StaticFiles
import pathlib, os, uvicorn, base64, json, shutil, uuid, time, urllib.parse
from typing import Dict, List, Any, Optional
import asyncio
import logging
import threading
import concurrent.futures
from openai import OpenAI
import fitz # PyMuPDF
import tempfile
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
import io
import docx2txt
# Logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
BASE = pathlib.Path(__file__).parent
app = FastAPI()
app.mount("/static", StaticFiles(directory=BASE), name="static")
# PDF directory (main directory)
PDF_DIR = BASE / "pdf"
if not PDF_DIR.exists():
PDF_DIR.mkdir(parents=True)
# Permanent PDF directory (Hugging Face persistent disk)
PERMANENT_PDF_DIR = pathlib.Path("/data/pdfs") if os.path.exists("/data") else BASE / "permanent_pdfs"
if not PERMANENT_PDF_DIR.exists():
PERMANENT_PDF_DIR.mkdir(parents=True)
# Cache directory
CACHE_DIR = BASE / "cache"
if not CACHE_DIR.exists():
CACHE_DIR.mkdir(parents=True)
# PDF metadata directory and file
METADATA_DIR = pathlib.Path("/data/metadata") if os.path.exists("/data") else BASE / "metadata"
if not METADATA_DIR.exists():
METADATA_DIR.mkdir(parents=True)
PDF_METADATA_FILE = METADATA_DIR / "pdf_metadata.json"
# Embedding cache directory
EMBEDDING_DIR = pathlib.Path("/data/embeddings") if os.path.exists("/data") else BASE / "embeddings"
if not EMBEDDING_DIR.exists():
EMBEDDING_DIR.mkdir(parents=True)
# Admin password
ADMIN_PASSWORD = os.getenv("PASSWORD", "admin") # Retrieved from environment variable; default is for testing
# OpenAI API key
OPENAI_API_KEY = os.getenv("LLM_API", "")
# Flag indicating if we have a valid API key
HAS_VALID_API_KEY = bool(OPENAI_API_KEY and OPENAI_API_KEY.strip())
if HAS_VALID_API_KEY:
try:
openai_client = OpenAI(api_key=OPENAI_API_KEY, timeout=30.0)
logger.info("OpenAI client initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {e}")
HAS_VALID_API_KEY = False
else:
logger.warning("No valid OpenAI API key found. AI features will be limited.")
openai_client = None
# Global cache object
pdf_cache: Dict[str, Dict[str, Any]] = {}
# Cache locks
cache_locks = {}
# PDF metadata (ID -> path)
pdf_metadata: Dict[str, str] = {}
# PDF embedding cache
pdf_embeddings: Dict[str, Dict[str, Any]] = {}
# Load PDF metadata from file
def load_pdf_metadata():
global pdf_metadata
if PDF_METADATA_FILE.exists():
try:
with open(PDF_METADATA_FILE, "r") as f:
pdf_metadata = json.load(f)
logger.info(f"PDF metadata loaded successfully: {len(pdf_metadata)} entries")
except Exception as e:
logger.error(f"Error loading metadata: {e}")
pdf_metadata = {}
else:
pdf_metadata = {}
# Save PDF metadata to file
def save_pdf_metadata():
try:
with open(PDF_METADATA_FILE, "w") as f:
json.dump(pdf_metadata, f)
except Exception as e:
logger.error(f"Error saving metadata: {e}")
# Generate a PDF ID (based on filename + timestamp)
def generate_pdf_id(filename: str) -> str:
import re
base_name = os.path.splitext(filename)[0]
safe_name = re.sub(r'[^\w\-_]', '_', base_name.replace(" ", "_"))
timestamp = int(time.time())
random_suffix = uuid.uuid4().hex[:6]
return f"{safe_name}_{timestamp}_{random_suffix}"
# Retrieve list of PDF files in main directory
def get_pdf_files():
pdf_files = []
if PDF_DIR.exists():
pdf_files = [f for f in PDF_DIR.glob("*.pdf")]
return pdf_files
# Retrieve list of PDF files in permanent directory
def get_permanent_pdf_files():
pdf_files = []
if PERMANENT_PDF_DIR.exists():
pdf_files = [f for f in PERMANENT_PDF_DIR.glob("*.pdf")]
return pdf_files
# Generate PDF project data (thumbnails, etc.)
def generate_pdf_projects():
projects_data = []
# Get files from both main and permanent directories
pdf_files = get_pdf_files()
permanent_pdf_files = get_permanent_pdf_files()
# Combine both sets of files (remove duplicates by filename)
unique_files = {}
# Add from main directory first
for file in pdf_files:
unique_files[file.name] = file
# Then add from permanent directory (overwrite if same filename)
for file in permanent_pdf_files:
unique_files[file.name] = file
for pdf_file in unique_files.values():
# Find the PDF ID for this file
pdf_id = None
for pid, path in pdf_metadata.items():
if os.path.basename(path) == pdf_file.name:
pdf_id = pid
break
# If the file has no ID, generate one and add it to metadata
if not pdf_id:
pdf_id = generate_pdf_id(pdf_file.name)
pdf_metadata[pdf_id] = str(pdf_file)
save_pdf_metadata()
projects_data.append({
"path": str(pdf_file),
"name": pdf_file.stem,
"id": pdf_id,
"cached": pdf_file.stem in pdf_cache and pdf_cache[pdf_file.stem].get("status") == "completed"
})
return projects_data
# Get path for cache file
def get_cache_path(pdf_name: str):
return CACHE_DIR / f"{pdf_name}_cache.json"
# Get path for embedding cache file
def get_embedding_path(pdf_id: str):
return EMBEDDING_DIR / f"{pdf_id}_embedding.json"
# Extract text from a PDF
def extract_pdf_text(pdf_path: str) -> List[Dict[str, Any]]:
try:
doc = fitz.open(pdf_path)
chunks = []
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
# Only add if the text is non-empty
if text.strip():
chunks.append({
"page": page_num + 1,
"text": text,
"chunk_id": f"page_{page_num + 1}"
})
return chunks
except Exception as e:
logger.error(f"Error extracting text from PDF: {e}")
return []
# Get or create PDF embedding by PDF ID
async def get_pdf_embedding(pdf_id: str) -> Dict[str, Any]:
try:
# Check embedding cache file
embedding_path = get_embedding_path(pdf_id)
if embedding_path.exists():
try:
with open(embedding_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
logger.error(f"Error loading embedding cache: {e}")
# Find the actual PDF path
pdf_path = get_pdf_path_by_id(pdf_id)
if not pdf_path:
raise ValueError(f"Could not find a file corresponding to PDF ID {pdf_id}")
# Extract text
chunks = extract_pdf_text(pdf_path)
if not chunks:
raise ValueError(f"No text could be extracted from PDF: {pdf_path}")
# Here, you'd normally create or fetch embeddings. For now, we just store chunks.
embedding_data = {
"pdf_id": pdf_id,
"pdf_path": pdf_path,
"chunks": chunks,
"created_at": time.time()
}
# Save embedding data to cache
with open(embedding_path, "w", encoding="utf-8") as f:
json.dump(embedding_data, f, ensure_ascii=False)
return embedding_data
except Exception as e:
logger.error(f"Error creating PDF embedding: {e}")
return {"error": str(e), "pdf_id": pdf_id}
# Query a PDF using its content (simple approach)
async def query_pdf(pdf_id: str, query: str) -> Dict[str, Any]:
try:
# If there's no valid API key
if not HAS_VALID_API_KEY or not openai_client:
return {
"error": "OpenAI API key not set.",
"answer": "Sorry, the AI feature is currently disabled. Please contact the system administrator."
}
# Get embedding data
embedding_data = await get_pdf_embedding(pdf_id)
if "error" in embedding_data:
return {"error": embedding_data["error"]}
# For simplicity, gather all text from the PDF
all_text = "\n\n".join([f"Page {chunk['page']}: {chunk['text']}" for chunk in embedding_data["chunks"]])
# Truncate context if too long
max_context_length = 60000 # roughly by characters
if len(all_text) > max_context_length:
all_text = all_text[:max_context_length] + "...(truncated)"
# System prompt
system_prompt = """
The default language is English. However, please respond in the language used in the user's prompt (e.g., English, Korean, Japanese, Chinese, etc.).
You are an assistant that answers questions based solely on the provided PDF content. Use only the information from the PDF content to respond. If the relevant information is not available in the PDF, respond with: "The requested information could not be found in the provided PDF."
Provide clear, concise answers and cite relevant page numbers. Always remain polite and courteous.
"""
# Attempting to call the openai_client
try:
# Retry logic
for attempt in range(3):
try:
response = openai_client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": (
f"The default language is English."
f"Please answer the following question using the PDF content below.\n\n"
f"PDF Content:\n{all_text}\n\n"
f"Question: {query}"
),
},
],
temperature=0.7,
max_tokens=2048,
timeout=30.0
)
answer = response.choices[0].message.content
return {
"answer": answer,
"pdf_id": pdf_id,
"query": query
}
except Exception as api_error:
logger.error(f"OpenAI API call error (attempt {attempt+1}/3): {api_error}")
if attempt == 2:
raise api_error
await asyncio.sleep(1 * (attempt + 1))
raise Exception("All retry attempts for API call failed.")
except Exception as api_error:
logger.error(f"Final OpenAI API call error: {api_error}")
error_message = str(api_error)
if "Connection" in error_message:
return {"error": "Could not connect to the OpenAI server. Please check your internet connection."}
elif "Unauthorized" in error_message or "Authentication" in error_message:
return {"error": "Invalid API key."}
elif "Rate limit" in error_message:
return {"error": "API rate limit exceeded. Please try again later."}
else:
return {"error": f"An error occurred while generating the AI response: {error_message}"}
except Exception as e:
logger.error(f"Error in query_pdf: {e}")
return {"error": str(e)}
# Summarize PDF
async def summarize_pdf(pdf_id: str) -> Dict[str, Any]:
try:
# If there's no valid API key
if not HAS_VALID_API_KEY or not openai_client:
return {
"error": "OpenAI API key not set. Check 'LLM_API' environment variable.",
"summary": "Cannot generate summary without an API key. Please contact the system administrator."
}
# Get embedding data
embedding_data = await get_pdf_embedding(pdf_id)
if "error" in embedding_data:
return {"error": embedding_data["error"], "summary": "Cannot extract text from the PDF."}
all_text = "\n\n".join([f"Page {chunk['page']}: {chunk['text']}" for chunk in embedding_data["chunks"]])
# Truncate if too long
max_context_length = 60000
if len(all_text) > max_context_length:
all_text = all_text[:max_context_length] + "...(truncated)"
try:
# Retry logic
for attempt in range(3):
try:
response = openai_client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{
"role": "system",
"content": (
"The default language is English. Please summarize the following PDF content "
"concisely, including key topics and main points, in less than 500 characters."
),
},
{"role": "user", "content": f"PDF Content:\n{all_text}"}
],
temperature=0.7,
max_tokens=1024,
timeout=30.0
)
summary = response.choices[0].message.content
return {
"summary": summary,
"pdf_id": pdf_id
}
except Exception as api_error:
logger.error(f"OpenAI API call error (attempt {attempt+1}/3): {api_error}")
if attempt == 2:
raise api_error
await asyncio.sleep(1 * (attempt + 1))
raise Exception("All retry attempts for API call failed.")
except Exception as api_error:
logger.error(f"Final OpenAI API error: {api_error}")
error_message = str(api_error)
if "Connection" in error_message:
return {"error": "Could not connect to the OpenAI server. Check your internet connection.", "pdf_id": pdf_id}
elif "Unauthorized" in error_message or "Authentication" in error_message:
return {"error": "Invalid API key.", "pdf_id": pdf_id}
elif "Rate limit" in error_message:
return {"error": "API rate limit exceeded. Please try again later.", "pdf_id": pdf_id}
else:
return {"error": f"An error occurred while generating the summary: {error_message}", "pdf_id": pdf_id}
except Exception as e:
logger.error(f"Error summarizing PDF: {e}")
return {
"error": str(e),
"summary": "An error occurred while summarizing the PDF. The PDF may be too large or in an unsupported format."
}
# Optimized PDF page caching
async def cache_pdf(pdf_path: str):
try:
import fitz
pdf_file = pathlib.Path(pdf_path)
pdf_name = pdf_file.stem
# Create a lock for this PDF (avoid concurrent caching)
if pdf_name not in cache_locks:
cache_locks[pdf_name] = threading.Lock()
# If it's already being cached or completed, skip
if pdf_name in pdf_cache and pdf_cache[pdf_name].get("status") in ["processing", "completed"]:
logger.info(f"PDF {pdf_name} is already cached or in progress.")
return
with cache_locks[pdf_name]:
# Double check after lock acquisition
if pdf_name in pdf_cache and pdf_cache[pdf_name].get("status") in ["processing", "completed"]:
return
pdf_cache[pdf_name] = {"status": "processing", "progress": 0, "pages": []}
# Check if there's an existing cache file
cache_path = get_cache_path(pdf_name)
if cache_path.exists():
try:
with open(cache_path, "r") as cache_file:
cached_data = json.load(cache_file)
if cached_data.get("status") == "completed" and cached_data.get("pages"):
pdf_cache[pdf_name] = cached_data
pdf_cache[pdf_name]["status"] = "completed"
logger.info(f"Loaded {pdf_name} from cache file.")
return
except Exception as e:
logger.error(f"Failed to load cache file: {e}")
# Open the PDF
doc = fitz.open(pdf_path)
total_pages = doc.page_count
# Generate a small thumbnail for the first page in advance (fast UI loading)
if total_pages > 0:
page = doc[0]
pix_thumb = page.get_pixmap(matrix=fitz.Matrix(0.2, 0.2))
thumb_data = pix_thumb.tobytes("png")
b64_thumb = base64.b64encode(thumb_data).decode('utf-8')
thumb_src = f"data:image/png;base64,{b64_thumb}"
pdf_cache[pdf_name]["pages"] = [{"thumb": thumb_src, "src": ""}]
pdf_cache[pdf_name]["progress"] = 1
pdf_cache[pdf_name]["total_pages"] = total_pages
# Adjust resolution and quality to optimize performance
scale_factor = 1.0
jpeg_quality = 80
# Worker function for parallel page processing
def process_page(page_num):
try:
page = doc[page_num]
pix = page.get_pixmap(matrix=fitz.Matrix(scale_factor, scale_factor))
img_data = pix.tobytes("jpeg", jpeg_quality)
b64_img = base64.b64encode(img_data).decode('utf-8')
img_src = f"data:image/jpeg;base64,{b64_img}"
# First page gets the thumbnail, others empty
thumb_src = "" if page_num > 0 else pdf_cache[pdf_name]["pages"][0]["thumb"]
return {
"page_num": page_num,
"src": img_src,
"thumb": thumb_src
}
except Exception as e:
logger.error(f"Error processing page {page_num}: {e}")
return {
"page_num": page_num,
"src": "",
"thumb": "",
"error": str(e)
}
pages = [None] * total_pages
processed_count = 0
# Batch processing
batch_size = 5
for batch_start in range(0, total_pages, batch_size):
batch_end = min(batch_start + batch_size, total_pages)
current_batch = list(range(batch_start, batch_end))
with concurrent.futures.ThreadPoolExecutor(max_workers=min(5, batch_size)) as executor:
batch_results = list(executor.map(process_page, current_batch))
for result in batch_results:
page_num = result["page_num"]
pages[page_num] = {
"src": result["src"],
"thumb": result["thumb"]
}
processed_count += 1
progress = round(processed_count / total_pages * 100)
pdf_cache[pdf_name]["progress"] = progress
pdf_cache[pdf_name]["pages"] = pages
try:
with open(cache_path, "w") as cache_file:
json.dump({
"status": "processing",
"progress": pdf_cache[pdf_name]["progress"],
"pages": pdf_cache[pdf_name]["pages"],
"total_pages": total_pages
}, cache_file)
except Exception as e:
logger.error(f"Failed to save intermediate cache: {e}")
pdf_cache[pdf_name] = {
"status": "completed",
"progress": 100,
"pages": pages,
"total_pages": total_pages
}
# Final save
try:
with open(cache_path, "w") as cache_file:
json.dump(pdf_cache[pdf_name], cache_file)
logger.info(f"PDF {pdf_name} cached successfully with {total_pages} pages.")
except Exception as e:
logger.error(f"Failed to save final cache: {e}")
except Exception as e:
import traceback
logger.error(f"Error caching PDF: {str(e)}\n{traceback.format_exc()}")
if pdf_name in pdf_cache:
pdf_cache[pdf_name]["status"] = "error"
pdf_cache[pdf_name]["error"] = str(e)
# Retrieve PDF path by PDF ID
def get_pdf_path_by_id(pdf_id: str) -> str:
logger.info(f"Searching for PDF by ID: {pdf_id}")
# 1. Directly check in metadata
if pdf_id in pdf_metadata:
path = pdf_metadata[pdf_id]
if os.path.exists(path):
return path
# If file was moved, try searching by filename
filename = os.path.basename(path)
# Check permanent directory
perm_path = PERMANENT_PDF_DIR / filename
if perm_path.exists():
pdf_metadata[pdf_id] = str(perm_path)
save_pdf_metadata()
return str(perm_path)
# Check main directory
main_path = PDF_DIR / filename
if main_path.exists():
pdf_metadata[pdf_id] = str(main_path)
save_pdf_metadata()
return str(main_path)
# 2. Fallback: search by partial filename
try:
name_part = pdf_id.split('_')[0] if '_' in pdf_id else pdf_id
for file_path in get_pdf_files() + get_permanent_pdf_files():
file_basename = os.path.basename(file_path)
if file_basename.startswith(name_part) or file_path.stem.startswith(name_part):
pdf_metadata[pdf_id] = str(file_path)
save_pdf_metadata()
return str(file_path)
except Exception as e:
logger.error(f"Error searching by filename: {e}")
# 3. As a last resort, compare with existing metadata
for pid, path in pdf_metadata.items():
if os.path.exists(path):
file_basename = os.path.basename(path)
if pdf_id in pid or pid in pdf_id:
pdf_metadata[pdf_id] = path
save_pdf_metadata()
return path
return None
# Initialize caching for all PDFs on startup
async def init_cache_all_pdfs():
logger.info("Starting PDF caching process.")
load_pdf_metadata()
pdf_files = get_pdf_files() + get_permanent_pdf_files()
unique_pdf_paths = set(str(p) for p in pdf_files)
pdf_files = [pathlib.Path(p) for p in unique_pdf_paths]
# Update metadata for all files
for pdf_file in pdf_files:
found = False
for pid, path in pdf_metadata.items():
if os.path.basename(path) == pdf_file.name:
found = True
if not os.path.exists(path):
pdf_metadata[pid] = str(pdf_file)
break
if not found:
pdf_id = generate_pdf_id(pdf_file.name)
pdf_metadata[pdf_id] = str(pdf_file)
save_pdf_metadata()
# Load existing cache for a quick start
for cache_file in CACHE_DIR.glob("*_cache.json"):
try:
pdf_name = cache_file.stem.replace("_cache", "")
with open(cache_file, "r") as f:
cached_data = json.load(f)
if cached_data.get("status") == "completed" and cached_data.get("pages"):
pdf_cache[pdf_name] = cached_data
pdf_cache[pdf_name]["status"] = "completed"
logger.info(f"Loaded existing cache: {pdf_name}")
except Exception as e:
logger.error(f"Error loading cache file: {str(e)}")
# Cache non-cached files in parallel
await asyncio.gather(*[
asyncio.create_task(cache_pdf(str(pdf_file)))
for pdf_file in pdf_files
if pdf_file.stem not in pdf_cache or pdf_cache[pdf_file.stem].get("status") != "completed"
])
@app.on_event("startup")
async def startup_event():
# Load PDF metadata
load_pdf_metadata()
# Create IDs for missing files
for pdf_file in get_pdf_files() + get_permanent_pdf_files():
found = False
for pid, path in pdf_metadata.items():
if os.path.basename(path) == pdf_file.name:
found = True
if not os.path.exists(path):
pdf_metadata[pid] = str(pdf_file)
break
if not found:
pdf_id = generate_pdf_id(pdf_file.name)
pdf_metadata[pdf_id] = str(pdf_file)
save_pdf_metadata()
# Start background caching task
asyncio.create_task(init_cache_all_pdfs())
# API endpoint: List PDF projects
@app.get("/api/pdf-projects")
async def get_pdf_projects_api():
return generate_pdf_projects()
# API endpoint: List permanently stored PDF projects
@app.get("/api/permanent-pdf-projects")
async def get_permanent_pdf_projects_api():
pdf_files = get_permanent_pdf_files()
projects_data = []
for pdf_file in pdf_files:
pdf_id = None
for pid, path in pdf_metadata.items():
if os.path.basename(path) == pdf_file.name:
pdf_id = pid
break
if not pdf_id:
pdf_id = generate_pdf_id(pdf_file.name)
pdf_metadata[pdf_id] = str(pdf_file)
save_pdf_metadata()
projects_data.append({
"path": str(pdf_file),
"name": pdf_file.stem,
"id": pdf_id,
"cached": pdf_file.stem in pdf_cache and pdf_cache[pdf_file.stem].get("status") == "completed"
})
return projects_data
# API endpoint: Get PDF info by ID
@app.get("/api/pdf-info-by-id/{pdf_id}")
async def get_pdf_info_by_id(pdf_id: str):
pdf_path = get_pdf_path_by_id(pdf_id)
if pdf_path:
pdf_file = pathlib.Path(pdf_path)
return {
"path": pdf_path,
"name": pdf_file.stem,
"id": pdf_id,
"exists": True,
"cached": pdf_file.stem in pdf_cache and pdf_cache[pdf_file.stem].get("status") == "completed"
}
return {"exists": False, "error": "Could not find the specified PDF."}
# API endpoint: Get PDF thumbnail (optimized)
@app.get("/api/pdf-thumbnail")
async def get_pdf_thumbnail(path: str):
try:
pdf_file = pathlib.Path(path)
pdf_name = pdf_file.stem
# If cached, return the thumbnail from cache
if pdf_name in pdf_cache and pdf_cache[pdf_name].get("pages"):
if pdf_cache[pdf_name]["pages"][0].get("thumb"):
return {"thumbnail": pdf_cache[pdf_name]["pages"][0]["thumb"]}
# If not cached, generate a quick thumbnail (smaller resolution)
import fitz
doc = fitz.open(path)
if doc.page_count > 0:
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(0.2, 0.2))
img_data = pix.tobytes("jpeg", 70)
b64_img = base64.b64encode(img_data).decode('utf-8')
# Start background caching
asyncio.create_task(cache_pdf(path))
return {"thumbnail": f"data:image/jpeg;base64,{b64_img}"}
return {"thumbnail": None}
except Exception as e:
logger.error(f"Error generating thumbnail: {str(e)}")
return {"error": str(e), "thumbnail": None}
# API endpoint: Cache status
@app.get("/api/cache-status")
async def get_cache_status(path: str = None):
if path:
pdf_file = pathlib.Path(path)
pdf_name = pdf_file.stem
if pdf_name in pdf_cache:
return pdf_cache[pdf_name]
return {"status": "not_cached"}
else:
return {
name: {"status": info["status"], "progress": info.get("progress", 0)}
for name, info in pdf_cache.items()
}
# API endpoint: Query PDF content with AI
@app.post("/api/ai/query-pdf/{pdf_id}")
async def api_query_pdf(pdf_id: str, query: Dict[str, str]):
try:
user_query = query.get("query", "")
if not user_query:
return JSONResponse(content={"error": "No question provided."}, status_code=400)
pdf_path = get_pdf_path_by_id(pdf_id)
if not pdf_path:
return JSONResponse(content={"error": f"No file found for PDF ID {pdf_id}"}, status_code=404)
result = await query_pdf(pdf_id, user_query)
if "error" in result:
return JSONResponse(content={"error": result["error"]}, status_code=500)
return result
except Exception as e:
logger.error(f"Error in AI query endpoint: {e}")
return JSONResponse(content={"error": str(e)}, status_code=500)
# API endpoint: Summarize PDF
@app.get("/api/ai/summarize-pdf/{pdf_id}")
async def api_summarize_pdf(pdf_id: str):
try:
pdf_path = get_pdf_path_by_id(pdf_id)
if not pdf_path:
return JSONResponse(content={"error": f"No file found for PDF ID {pdf_id}"}, status_code=404)
result = await summarize_pdf(pdf_id)
if "error" in result:
return JSONResponse(content={"error": result["error"]}, status_code=500)
return result
except Exception as e:
logger.error(f"Error in PDF summary endpoint: {e}")
return JSONResponse(content={"error": str(e)}, status_code=500)
# API endpoint: Provide cached PDF content (progressive loading)
@app.get("/api/cached-pdf")
async def get_cached_pdf(path: str, background_tasks: BackgroundTasks):
try:
pdf_file = pathlib.Path(path)
pdf_name = pdf_file.stem
if pdf_name in pdf_cache:
status = pdf_cache[pdf_name].get("status", "")
if status == "completed":
return pdf_cache[pdf_name]
elif status == "processing":
progress = pdf_cache[pdf_name].get("progress", 0)
pages = pdf_cache[pdf_name].get("pages", [])
total_pages = pdf_cache[pdf_name].get("total_pages", 0)
return {
"status": "processing",
"progress": progress,
"pages": pages,
"total_pages": total_pages,
"available_pages": len([p for p in pages if p and p.get("src")])
}
# If no cache exists, start caching in the background
background_tasks.add_task(cache_pdf, path)
return {"status": "started", "progress": 0}
except Exception as e:
logger.error(f"Error providing cached PDF: {str(e)}")
return {"error": str(e), "status": "error"}
# API endpoint: Provide original PDF content (if not cached)
@app.get("/api/pdf-content")
async def get_pdf_content(path: str, background_tasks: BackgroundTasks):
try:
pdf_file = pathlib.Path(path)
if not pdf_file.exists():
return JSONResponse(content={"error": f"File not found: {path}"}, status_code=404)
pdf_name = pdf_file.stem
# If already cached or partially cached, redirect
if pdf_name in pdf_cache and (
pdf_cache[pdf_name].get("status") == "completed"
or (
pdf_cache[pdf_name].get("status") == "processing"
and pdf_cache[pdf_name].get("progress", 0) > 10
)
):
return JSONResponse(content={"redirect": f"/api/cached-pdf?path={path}"})
with open(path, "rb") as pdf_file_handle:
content = pdf_file_handle.read()
import urllib.parse
filename = pdf_file.name
encoded_filename = urllib.parse.quote(filename)
# Start caching in the background
background_tasks.add_task(cache_pdf, path)
headers = {
"Content-Type": "application/pdf",
"Content-Disposition": f'inline; filename="{encoded_filename}"; filename*=UTF-8\'\'{encoded_filename}'
}
return Response(content=content, media_type="application/pdf", headers=headers)
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"Error loading PDF content: {str(e)}\n{error_details}")
return JSONResponse(content={"error": str(e)}, status_code=500)
# API endpoint: Upload PDF to permanent storage
@app.post("/api/upload-pdf")
async def upload_pdf(file: UploadFile = File(...)):
try:
if not file.filename.lower().endswith('.pdf'):
return JSONResponse(content={"success": False, "message": "Only PDF files are allowed."}, status_code=400)
file_path = PERMANENT_PDF_DIR / file.filename
content = await file.read()
with open(file_path, "wb") as buffer:
buffer.write(content)
# Also copy to main directory to be automatically displayed
with open(PDF_DIR / file.filename, "wb") as buffer:
buffer.write(content)
pdf_id = generate_pdf_id(file.filename)
pdf_metadata[pdf_id] = str(file_path)
save_pdf_metadata()
asyncio.create_task(cache_pdf(str(file_path)))
return JSONResponse(
content={
"success": True,
"path": str(file_path),
"name": file_path.stem,
"id": pdf_id,
"viewUrl": f"/view/{pdf_id}"
},
status_code=200
)
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"Error uploading PDF: {str(e)}\n{error_details}")
return JSONResponse(content={"success": False, "message": str(e)}, status_code=500)
# Convert text file to PDF
async def convert_text_to_pdf(text_content: str, title: str) -> str:
try:
import re
safe_title = re.sub(r'[^\w\-_\. ]', '_', title)
if not safe_title:
safe_title = "aibook"
timestamp = int(time.time())
filename = f"{safe_title}_{timestamp}.pdf"
file_path = PERMANENT_PDF_DIR / filename
# Registering a Korean font. If not found, fallback to Helvetica.
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
font_path = BASE / "MaruBuri-SemiBold.ttf"
font_name = "MaruBuri"
if font_path.exists():
pdfmetrics.registerFont(TTFont(font_name, str(font_path)))
logger.info(f"Successfully registered the Korean font: {font_path}")
else:
font_name = "Helvetica"
logger.warning(f"Could not find the Korean font file: {font_path}. Using a default font.")
pdf_buffer = io.BytesIO()
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.enums import TA_CENTER, TA_LEFT
doc = SimpleDocTemplate(pdf_buffer, pagesize=letter, encoding='utf-8')
title_style = ParagraphStyle(
name='CustomTitle',
fontName=font_name,
fontSize=18,
leading=22,
alignment=TA_CENTER,
spaceAfter=20
)
normal_style = ParagraphStyle(
name='CustomNormal',
fontName=font_name,
fontSize=12,
leading=15,
alignment=TA_LEFT,
spaceBefore=6,
spaceAfter=6
)
content = []
# Add title
content.append(Paragraph(title, title_style))
content.append(Spacer(1, 20))
paragraphs = text_content.split('\n\n')
for para in paragraphs:
if para.strip():
from xml.sax.saxutils import escape
safe_para = escape(para.replace('\n', '<br/>'))
p = Paragraph(safe_para, normal_style)
content.append(p)
content.append(Spacer(1, 10))
doc.build(content)
with open(file_path, 'wb') as f:
f.write(pdf_buffer.getvalue())
# Copy to main directory
with open(PDF_DIR / filename, 'wb') as f:
f.write(pdf_buffer.getvalue())
pdf_id = generate_pdf_id(filename)
pdf_metadata[pdf_id] = str(file_path)
save_pdf_metadata()
asyncio.create_task(cache_pdf(str(file_path)))
return {
"path": str(file_path),
"filename": filename,
"id": pdf_id
}
except Exception as e:
logger.error(f"Error converting text to PDF: {e}")
raise e
# AI-based text enhancement stub (placeholder)
async def enhance_text_with_ai(text_content: str, title: str) -> str:
# Currently returns the original text (AI enhancement disabled)
return text_content
# API endpoint: Convert uploaded text file to PDF
@app.post("/api/text-to-pdf")
async def text_to_pdf(file: UploadFile = File(...)):
try:
filename = file.filename.lower()
if not (filename.endswith('.txt') or filename.endswith('.docx') or filename.endswith('.doc')):
return JSONResponse(
content={"success": False, "message": "Supported file formats are .txt, .docx, and .doc only."},
status_code=400
)
content = await file.read()
# Extract text depending on file type
if filename.endswith('.txt'):
encodings = ['utf-8', 'euc-kr', 'cp949', 'latin1']
text_content = None
for encoding in encodings:
try:
text_content = content.decode(encoding, errors='strict')
logger.info(f"Detected text file encoding: {encoding}")
break
except UnicodeDecodeError:
continue
if text_content is None:
text_content = content.decode('utf-8', errors='replace')
logger.warning("Could not detect text file encoding; defaulting to UTF-8.")
elif filename.endswith('.docx') or filename.endswith('.doc'):
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(filename)[1]) as temp_file:
temp_file.write(content)
temp_path = temp_file.name
try:
text_content = docx2txt.process(temp_path)
finally:
os.unlink(temp_path)
title = os.path.splitext(filename)[0]
# Optional AI enhancement
enhanced_text = await enhance_text_with_ai(text_content, title)
# Convert the final text to PDF
pdf_info = await convert_text_to_pdf(enhanced_text, title)
return JSONResponse(
content={
"success": True,
"path": pdf_info["path"],
"name": os.path.splitext(pdf_info["filename"])[0],
"id": pdf_info["id"],
"viewUrl": f"/view/{pdf_info['id']}"
},
status_code=200
)
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"Error converting text to PDF: {str(e)}\n{error_details}")
return JSONResponse(content={"success": False, "message": str(e)}, status_code=500)
# Admin authentication endpoint
@app.post("/api/admin-login")
async def admin_login(password: str = Form(...)):
if password == ADMIN_PASSWORD:
return {"success": True}
return {"success": False, "message": "Authentication failed."}
# Admin: Delete PDF
@app.delete("/api/admin/delete-pdf")
async def delete_pdf(path: str):
try:
pdf_file = pathlib.Path(path)
if not pdf_file.exists():
return {"success": False, "message": "File not found."}
filename = pdf_file.name
# Delete from permanent storage
pdf_file.unlink()
# Also delete from main directory if exists
main_file_path = PDF_DIR / filename
if main_file_path.exists():
main_file_path.unlink()
# Delete related cache
pdf_name = pdf_file.stem
cache_path = get_cache_path(pdf_name)
if cache_path.exists():
cache_path.unlink()
if pdf_name in pdf_cache:
del pdf_cache[pdf_name]
# Remove from metadata
to_remove = []
for pid, fpath in pdf_metadata.items():
if os.path.basename(fpath) == filename:
to_remove.append(pid)
for pid in to_remove:
del pdf_metadata[pid]
save_pdf_metadata()
return {"success": True}
except Exception as e:
logger.error(f"Error deleting PDF: {str(e)}")
return {"success": False, "message": str(e)}
# Admin: Feature PDF (copy to main directory)
@app.post("/api/admin/feature-pdf")
async def feature_pdf(path: str):
try:
pdf_file = pathlib.Path(path)
if not pdf_file.exists():
return {"success": False, "message": "File not found."}
target_path = PDF_DIR / pdf_file.name
shutil.copy2(pdf_file, target_path)
return {"success": True}
except Exception as e:
logger.error(f"Error featuring PDF: {str(e)}")
return {"success": False, "message": str(e)}
# Admin: Unfeature PDF (remove from main directory only)
@app.delete("/api/admin/unfeature-pdf")
async def unfeature_pdf(path: str):
try:
pdf_name = pathlib.Path(path).name
target_path = PDF_DIR / pdf_name
if target_path.exists():
target_path.unlink()
return {"success": True}
except Exception as e:
logger.error(f"Error unfeaturing PDF: {str(e)}")
return {"success": False, "message": str(e)}
@app.get("/view/{pdf_id}")
async def view_pdf_by_id(pdf_id: str):
pdf_path = get_pdf_path_by_id(pdf_id)
if not pdf_path:
# Reload metadata and retry
load_pdf_metadata()
pdf_path = get_pdf_path_by_id(pdf_id)
if not pdf_path:
# As a final fallback, try scanning all files for a match
for file_path in get_pdf_files() + get_permanent_pdf_files():
name_part = pdf_id.split('_')[0] if '_' in pdf_id else pdf_id
if file_path.stem.startswith(name_part):
pdf_metadata[pdf_id] = str(file_path)
save_pdf_metadata()
pdf_path = str(file_path)
break
if not pdf_path:
return HTMLResponse(
content=(
f"<html><body><h1>Could not find the requested PDF</h1>"
f"<p>ID: {pdf_id}</p><a href='/'>Go back to home</a></body></html>"
),
status_code=404
)
# Redirect to the main page with PDF ID parameter
return get_html_content(pdf_id=pdf_id)
def get_html_content(pdf_id: str = None):
html_path = BASE / "flipbook_template.html"
content = ""
if html_path.exists():
with open(html_path, "r", encoding="utf-8") as f:
content = f.read()
else:
content = HTML # fallback if no local template
if pdf_id:
auto_load_script = f"""
<script>
document.addEventListener('DOMContentLoaded', async function() {{
try {{
const response = await fetch('/api/pdf-info-by-id/{pdf_id}');
const pdfInfo = await response.json();
if (pdfInfo.exists && pdfInfo.path) {{
setTimeout(() => {{
openPdfById('{pdf_id}', pdfInfo.path, pdfInfo.cached);
}}, 500);
}} else {{
showError("The requested PDF could not be found.");
}}
}} catch (e) {{
console.error("Auto-load PDF error:", e);
}}
}});
</script>
"""
content = content.replace("</body>", auto_load_script + "</body>")
return HTMLResponse(content=content)
@app.get("/", response_class=HTMLResponse)
async def root(request: Request, pdf_id: Optional[str] = Query(None)):
if pdf_id:
return RedirectResponse(url=f"/view/{pdf_id}")
return get_html_content()
import os
HTML = os.getenv("HTML_TEMPLATE", "")
if not HTML:
logger.warning("HTML_TEMPLATE secret is not set. Using default HTML.")
HTML = """
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>FlipBook Space</title>
<style>
body { font-family: Arial, sans-serif; text-align: center; padding: 50px; }
.error { color: red; }
</style>
</head>
<body>
<h1>Could not load the HTML template</h1>
<p class="error">HTML_TEMPLATE secret is not configured.</p>
<p>Please set the HTML_TEMPLATE in your Hugging Face Space secrets.</p>
</body>
</html>
"""
if __name__ == "__main__":
uvicorn.run("app:app", host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|