Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -32,13 +32,8 @@ except Exception as e:
|
|
32 |
print("Continuing with limited functionality...")
|
33 |
|
34 |
# ----------------------- Global Variables ----------------------- #
|
35 |
-
|
36 |
-
|
37 |
-
'๐บ๐ธ Bella': 'af_bella',
|
38 |
-
'๐บ๐ธ Sarah': 'af_sarah',
|
39 |
-
'๐บ๐ธ Nicole': 'af_nicole'
|
40 |
-
}
|
41 |
-
TTS_ENABLED = False # ๊ธฐ๋ณธ์ ์ผ๋ก TTS ๋ชจ๋ ์ด๊ธฐํ ์คํจ ์ ๋นํ์ฑํ
|
42 |
|
43 |
# ----------------------- Model and Tokenizer Initialization ----------------------- #
|
44 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
@@ -56,16 +51,8 @@ def init_models():
|
|
56 |
return model
|
57 |
|
58 |
# ----------------------- Kokoro TTS Initialization ----------------------- #
|
59 |
-
|
60 |
-
|
61 |
-
sys.path.append('Kokoro-82M')
|
62 |
-
from models import build_model
|
63 |
-
from kokoro import generate
|
64 |
-
|
65 |
-
TTS_ENABLED = True
|
66 |
-
except Exception as e:
|
67 |
-
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
68 |
-
TTS_ENABLED = False
|
69 |
|
70 |
# ----------------------- Web Search Functions ----------------------- #
|
71 |
def get_web_results(query, max_results=5):
|
@@ -82,19 +69,18 @@ def get_web_results(query, max_results=5):
|
|
82 |
return []
|
83 |
|
84 |
def format_prompt(query, context):
|
|
|
85 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
86 |
-
context_lines = '\n'.join([f'-
|
87 |
-
return f"""You are an intelligent search assistant.
|
88 |
Current Time: {current_time}
|
89 |
|
90 |
-
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
|
91 |
-
|
92 |
Query: {query}
|
93 |
|
94 |
Web Context:
|
95 |
{context_lines}
|
96 |
|
97 |
-
|
98 |
Answer:"""
|
99 |
|
100 |
def format_sources(web_results):
|
@@ -144,96 +130,36 @@ def generate_answer(prompt):
|
|
144 |
)
|
145 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
146 |
|
147 |
-
|
148 |
-
def
|
149 |
-
try:
|
150 |
-
device = 'cuda'
|
151 |
-
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
152 |
-
VOICEPACK = torch.load(f'Kokoro-82M/voices/{voice_name}.pt', weights_only=True).to(device)
|
153 |
-
|
154 |
-
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
155 |
-
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
156 |
-
|
157 |
-
max_chars = 1000
|
158 |
-
if len(clean_text) > max_chars:
|
159 |
-
sentences = clean_text.split('.')
|
160 |
-
chunks = []
|
161 |
-
current_chunk = ""
|
162 |
-
for sentence in sentences:
|
163 |
-
if len(current_chunk) + len(sentence) < max_chars:
|
164 |
-
current_chunk += sentence + "."
|
165 |
-
else:
|
166 |
-
if current_chunk:
|
167 |
-
chunks.append(current_chunk)
|
168 |
-
current_chunk = sentence + "."
|
169 |
-
if current_chunk:
|
170 |
-
chunks.append(current_chunk)
|
171 |
-
else:
|
172 |
-
chunks = [clean_text]
|
173 |
-
|
174 |
-
audio_chunks = []
|
175 |
-
for chunk in chunks:
|
176 |
-
if chunk.strip():
|
177 |
-
chunk_audio, _ = generate(TTS_MODEL, chunk.strip(), VOICEPACK, lang='a')
|
178 |
-
if isinstance(chunk_audio, torch.Tensor):
|
179 |
-
chunk_audio = chunk_audio.cpu().numpy()
|
180 |
-
audio_chunks.append(chunk_audio)
|
181 |
-
|
182 |
-
if audio_chunks:
|
183 |
-
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
184 |
-
return (24000, final_audio)
|
185 |
-
return None
|
186 |
-
|
187 |
-
except Exception as e:
|
188 |
-
print(f"Error generating speech: {str(e)}")
|
189 |
-
import traceback
|
190 |
-
traceback.print_exc()
|
191 |
-
return None
|
192 |
-
|
193 |
-
def process_query(query, history, selected_voice='af'):
|
194 |
try:
|
195 |
if history is None:
|
196 |
history = []
|
197 |
|
|
|
198 |
web_results = get_web_results(query)
|
199 |
sources_html = format_sources(web_results)
|
200 |
|
|
|
201 |
current_history = history + [[query, "*Searching...*"]]
|
202 |
yield {
|
203 |
-
answer_output: gr.Markdown("*Searching &
|
204 |
sources_output: gr.HTML(sources_html),
|
205 |
search_btn: gr.Button("Searching...", interactive=False),
|
206 |
-
chat_history_display: current_history
|
207 |
-
audio_output: None
|
208 |
}
|
209 |
|
|
|
210 |
prompt_text = format_prompt(query, web_results)
|
211 |
answer = generate_answer(prompt_text)
|
212 |
final_answer = answer.split("Answer:")[-1].strip()
|
213 |
|
214 |
-
if TTS_ENABLED:
|
215 |
-
try:
|
216 |
-
yield {
|
217 |
-
answer_output: gr.Markdown(final_answer),
|
218 |
-
sources_output: gr.HTML(sources_html),
|
219 |
-
search_btn: gr.Button("Generating audio...", interactive=False),
|
220 |
-
chat_history_display: history + [[query, final_answer]],
|
221 |
-
audio_output: None
|
222 |
-
}
|
223 |
-
audio = generate_speech_with_gpu(final_answer, selected_voice)
|
224 |
-
except Exception as e:
|
225 |
-
print(f"Error in speech generation: {str(e)}")
|
226 |
-
audio = None
|
227 |
-
else:
|
228 |
-
audio = None
|
229 |
-
|
230 |
updated_history = history + [[query, final_answer]]
|
231 |
yield {
|
232 |
answer_output: gr.Markdown(final_answer),
|
233 |
sources_output: gr.HTML(sources_html),
|
234 |
search_btn: gr.Button("Search", interactive=True),
|
235 |
-
chat_history_display: updated_history
|
236 |
-
audio_output: audio if audio is not None else gr.Audio(value=None)
|
237 |
}
|
238 |
except Exception as e:
|
239 |
error_message = str(e)
|
@@ -242,10 +168,9 @@ def process_query(query, history, selected_voice='af'):
|
|
242 |
|
243 |
yield {
|
244 |
answer_output: gr.Markdown(f"Error: {error_message}"),
|
245 |
-
sources_output: gr.HTML(
|
246 |
search_btn: gr.Button("Search", interactive=True),
|
247 |
-
chat_history_display: history + [[query, f"*Error: {error_message}*"]]
|
248 |
-
audio_output: None
|
249 |
}
|
250 |
|
251 |
# ----------------------- Custom CSS for Bright UI ----------------------- #
|
@@ -260,7 +185,7 @@ css = """
|
|
260 |
#header {
|
261 |
text-align: center;
|
262 |
padding: 2rem 0;
|
263 |
-
background: #
|
264 |
border-radius: 12px;
|
265 |
color: #333333;
|
266 |
margin-bottom: 2rem;
|
@@ -385,20 +310,6 @@ css = """
|
|
385 |
border: 1px solid #e0e0e0;
|
386 |
}
|
387 |
|
388 |
-
.voice-selector {
|
389 |
-
margin-top: 1rem;
|
390 |
-
background: #ffffff;
|
391 |
-
border-radius: 8px;
|
392 |
-
padding: 0.5rem;
|
393 |
-
border: 1px solid #cccccc;
|
394 |
-
}
|
395 |
-
|
396 |
-
.voice-selector select {
|
397 |
-
background: #ffffff !important;
|
398 |
-
color: #333333 !important;
|
399 |
-
border: 1px solid #cccccc !important;
|
400 |
-
}
|
401 |
-
|
402 |
footer {
|
403 |
text-align: center;
|
404 |
padding: 1rem 0;
|
@@ -413,7 +324,7 @@ with gr.Blocks(title="AI Search Assistant", css=css) as demo:
|
|
413 |
|
414 |
with gr.Column(elem_id="header"):
|
415 |
gr.Markdown("# ๐ AI Search Assistant")
|
416 |
-
gr.Markdown("### Powered by DeepSeek & Real-time Web Results
|
417 |
|
418 |
with gr.Column(elem_classes="search-container"):
|
419 |
with gr.Row(elem_classes="search-box"):
|
@@ -424,19 +335,12 @@ with gr.Blocks(title="AI Search Assistant", css=css) as demo:
|
|
424 |
container=False
|
425 |
)
|
426 |
search_btn = gr.Button("Search", variant="primary", scale=1)
|
427 |
-
voice_select = gr.Dropdown(
|
428 |
-
choices=list(VOICE_CHOICES.items()),
|
429 |
-
value='af',
|
430 |
-
label="Select Voice",
|
431 |
-
elem_classes="voice-selector"
|
432 |
-
)
|
433 |
|
434 |
with gr.Row(elem_classes="results-container"):
|
435 |
with gr.Column(scale=2):
|
436 |
with gr.Column(elem_classes="answer-box"):
|
437 |
answer_output = gr.Markdown()
|
438 |
-
|
439 |
-
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
440 |
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
441 |
with gr.Column(scale=1):
|
442 |
with gr.Column():
|
@@ -457,13 +361,13 @@ with gr.Blocks(title="AI Search Assistant", css=css) as demo:
|
|
457 |
|
458 |
search_btn.click(
|
459 |
fn=process_query,
|
460 |
-
inputs=[search_input, chat_history
|
461 |
-
outputs=[answer_output, sources_output, search_btn, chat_history_display
|
462 |
)
|
463 |
search_input.submit(
|
464 |
fn=process_query,
|
465 |
-
inputs=[search_input, chat_history
|
466 |
-
outputs=[answer_output, sources_output, search_btn, chat_history_display
|
467 |
)
|
468 |
|
469 |
if __name__ == "__main__":
|
|
|
32 |
print("Continuing with limited functionality...")
|
33 |
|
34 |
# ----------------------- Global Variables ----------------------- #
|
35 |
+
# ์์ฑ ๊ด๋ จ ๋ณ์๋ ๋ ์ด์ ์ฌ์ฉํ์ง ์์
|
36 |
+
# VOICE_CHOICES = { ... } --> ์ ๊ฑฐ
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# ----------------------- Model and Tokenizer Initialization ----------------------- #
|
39 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
|
|
51 |
return model
|
52 |
|
53 |
# ----------------------- Kokoro TTS Initialization ----------------------- #
|
54 |
+
# ์์ฑ ๊ธฐ๋ฅ ์ ๊ฑฐ: TTS ์ด๊ธฐํ ๊ด๋ จ ์ฝ๋๋ ๋ ์ด์ ์ฌ์ฉํ์ง ์์
|
55 |
+
TTS_ENABLED = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# ----------------------- Web Search Functions ----------------------- #
|
58 |
def get_web_results(query, max_results=5):
|
|
|
69 |
return []
|
70 |
|
71 |
def format_prompt(query, context):
|
72 |
+
"""์น ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ๊ฒฐํ๊ณ ์์ฝ๋ ๋ต๋ณ์ ์์ฑํ๋๋ก ํ๋กฌํํธ๋ฅผ ๊ตฌ์ฑํฉ๋๋ค."""
|
73 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
74 |
+
context_lines = '\n'.join([f'- {res["title"]}: {res["snippet"]}' for res in context])
|
75 |
+
return f"""You are an intelligent search assistant. Your task is to provide a concise, clear summary answer to the user's query based solely on the provided web context.
|
76 |
Current Time: {current_time}
|
77 |
|
|
|
|
|
78 |
Query: {query}
|
79 |
|
80 |
Web Context:
|
81 |
{context_lines}
|
82 |
|
83 |
+
Please provide a summary answer in markdown format, including citations such as [1], [2], etc. in your answer if needed.
|
84 |
Answer:"""
|
85 |
|
86 |
def format_sources(web_results):
|
|
|
130 |
)
|
131 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
132 |
|
133 |
+
# ----------------------- Process Query and Output Summary ----------------------- #
|
134 |
+
def process_query(query, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
try:
|
136 |
if history is None:
|
137 |
history = []
|
138 |
|
139 |
+
# ์น ๊ฒ์ ๊ฒฐ๊ณผ ๊ฐ์ ธ์ค๊ธฐ
|
140 |
web_results = get_web_results(query)
|
141 |
sources_html = format_sources(web_results)
|
142 |
|
143 |
+
# ์ค๊ฐ ์ํ ํ์
|
144 |
current_history = history + [[query, "*Searching...*"]]
|
145 |
yield {
|
146 |
+
answer_output: gr.Markdown("*Searching & Summarizing...*"),
|
147 |
sources_output: gr.HTML(sources_html),
|
148 |
search_btn: gr.Button("Searching...", interactive=False),
|
149 |
+
chat_history_display: current_history
|
|
|
150 |
}
|
151 |
|
152 |
+
# ํ๋กฌํํธ ์์ฑ: ์น ๊ฒฐ๊ณผ๋ฅผ ์์ฝํ๋ ํํ๋ก ๊ตฌ์ฑ
|
153 |
prompt_text = format_prompt(query, web_results)
|
154 |
answer = generate_answer(prompt_text)
|
155 |
final_answer = answer.split("Answer:")[-1].strip()
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
updated_history = history + [[query, final_answer]]
|
158 |
yield {
|
159 |
answer_output: gr.Markdown(final_answer),
|
160 |
sources_output: gr.HTML(sources_html),
|
161 |
search_btn: gr.Button("Search", interactive=True),
|
162 |
+
chat_history_display: updated_history
|
|
|
163 |
}
|
164 |
except Exception as e:
|
165 |
error_message = str(e)
|
|
|
168 |
|
169 |
yield {
|
170 |
answer_output: gr.Markdown(f"Error: {error_message}"),
|
171 |
+
sources_output: gr.HTML(""),
|
172 |
search_btn: gr.Button("Search", interactive=True),
|
173 |
+
chat_history_display: history + [[query, f"*Error: {error_message}*"]]
|
|
|
174 |
}
|
175 |
|
176 |
# ----------------------- Custom CSS for Bright UI ----------------------- #
|
|
|
185 |
#header {
|
186 |
text-align: center;
|
187 |
padding: 2rem 0;
|
188 |
+
background: #e3f2fd;
|
189 |
border-radius: 12px;
|
190 |
color: #333333;
|
191 |
margin-bottom: 2rem;
|
|
|
310 |
border: 1px solid #e0e0e0;
|
311 |
}
|
312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
footer {
|
314 |
text-align: center;
|
315 |
padding: 1rem 0;
|
|
|
324 |
|
325 |
with gr.Column(elem_id="header"):
|
326 |
gr.Markdown("# ๐ AI Search Assistant")
|
327 |
+
gr.Markdown("### Powered by DeepSeek & Real-time Web Results")
|
328 |
|
329 |
with gr.Column(elem_classes="search-container"):
|
330 |
with gr.Row(elem_classes="search-box"):
|
|
|
335 |
container=False
|
336 |
)
|
337 |
search_btn = gr.Button("Search", variant="primary", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
with gr.Row(elem_classes="results-container"):
|
340 |
with gr.Column(scale=2):
|
341 |
with gr.Column(elem_classes="answer-box"):
|
342 |
answer_output = gr.Markdown()
|
343 |
+
with gr.Accordion("Chat History", open=False):
|
|
|
344 |
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
345 |
with gr.Column(scale=1):
|
346 |
with gr.Column():
|
|
|
361 |
|
362 |
search_btn.click(
|
363 |
fn=process_query,
|
364 |
+
inputs=[search_input, chat_history],
|
365 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display]
|
366 |
)
|
367 |
search_input.submit(
|
368 |
fn=process_query,
|
369 |
+
inputs=[search_input, chat_history],
|
370 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display]
|
371 |
)
|
372 |
|
373 |
if __name__ == "__main__":
|