Spaces:
Paused
Paused
import gradio as gr | |
import subprocess | |
import os | |
import shutil | |
import tempfile | |
import torch | |
import logging | |
import numpy as np | |
import re | |
from concurrent.futures import ThreadPoolExecutor | |
from functools import lru_cache | |
# λ‘κΉ μ€μ | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler('yue_generation.log'), | |
logging.StreamHandler() | |
] | |
) | |
# κ°μ¬ λΆμ ν¨μ | |
def analyze_lyrics(lyrics): | |
# μ€ λ¨μλ‘ λΆλ¦¬ | |
lines = [line.strip() for line in lyrics.split('\n') if line.strip()] | |
# μΉμ μΉ΄μ΄νΈ | |
sections = { | |
'verse': 0, | |
'chorus': 0, | |
'bridge': 0, | |
'total_lines': len(lines) | |
} | |
current_section = None | |
section_lines = { | |
'verse': 0, | |
'chorus': 0, | |
'bridge': 0 | |
} | |
for line in lines: | |
lower_line = line.lower() | |
if '[verse]' in lower_line: | |
current_section = 'verse' | |
sections['verse'] += 1 | |
elif '[chorus]' in lower_line: | |
current_section = 'chorus' | |
sections['chorus'] += 1 | |
elif '[bridge]' in lower_line: | |
current_section = 'bridge' | |
sections['bridge'] += 1 | |
elif current_section and line.strip(): | |
section_lines[current_section] += 1 | |
# μ΄ μΉμ μ κ³μ° | |
total_sections = sections['verse'] + sections['chorus'] + sections['bridge'] | |
return sections, total_sections, len(lines), section_lines | |
def calculate_generation_params(lyrics): | |
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics) | |
# κΈ°λ³Έ ν ν° μ κ³μ° | |
base_tokens_per_line = 200 | |
verse_tokens = section_lines['verse'] * base_tokens_per_line | |
chorus_tokens = section_lines['chorus'] * (base_tokens_per_line * 1.5) # μ½λ¬μ€λ 50% λ λ§μ ν ν° | |
bridge_tokens = section_lines['bridge'] * base_tokens_per_line | |
# μ΄ ν ν° μ κ³μ° | |
total_tokens = int(verse_tokens + chorus_tokens + bridge_tokens) | |
# μΉμ κΈ°λ° μΈκ·Έλ¨ΌνΈ μ κ³μ° | |
num_segments = max(2, min(4, total_sections)) | |
# ν ν° μ μ ν | |
max_tokens = min(32000, max(3000, total_tokens)) | |
return { | |
'max_tokens': max_tokens, | |
'num_segments': num_segments, | |
'sections': sections, | |
'section_lines': section_lines | |
} | |
# μΈμ΄ κ°μ§ λ° λͺ¨λΈ μ ν ν¨μ | |
def detect_and_select_model(text): | |
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text): # νκΈ | |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot" | |
elif re.search(r'[\u4e00-\u9fff]', text): # μ€κ΅μ΄ | |
return "m-a-p/YuE-s1-7B-anneal-zh-cot" | |
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text): # μΌλ³Έμ΄ | |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot" | |
else: # μμ΄/κΈ°ν | |
return "m-a-p/YuE-s1-7B-anneal-en-cot" | |
def optimize_model_selection(lyrics, genre): | |
model_path = detect_and_select_model(lyrics) | |
params = calculate_generation_params(lyrics) | |
model_config = { | |
"m-a-p/YuE-s1-7B-anneal-en-cot": { | |
"max_tokens": params['max_tokens'], | |
"temperature": 0.8, | |
"batch_size": 8, | |
"num_segments": params['num_segments'], | |
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0 | |
}, | |
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": { | |
"max_tokens": params['max_tokens'], | |
"temperature": 0.7, | |
"batch_size": 8, | |
"num_segments": params['num_segments'], | |
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0 | |
}, | |
"m-a-p/YuE-s1-7B-anneal-zh-cot": { | |
"max_tokens": params['max_tokens'], | |
"temperature": 0.7, | |
"batch_size": 8, | |
"num_segments": params['num_segments'], | |
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0 | |
} | |
} | |
return model_path, model_config[model_path], params | |
# GPU μ€μ μ΅μ ν | |
def optimize_gpu_settings(): | |
if torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True | |
torch.backends.cudnn.deterministic = False | |
torch.backends.cudnn.enabled = True | |
torch.cuda.empty_cache() | |
torch.cuda.set_device(0) | |
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}") | |
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB") | |
else: | |
logging.warning("GPU not available!") | |
def install_flash_attn(): | |
try: | |
logging.info("Installing flash-attn...") | |
subprocess.run( | |
["pip", "install", "flash-attn", "--no-build-isolation"], | |
check=True, | |
capture_output=True | |
) | |
logging.info("flash-attn installed successfully!") | |
except subprocess.CalledProcessError as e: | |
logging.error(f"Failed to install flash-attn: {e}") | |
raise | |
def initialize_system(): | |
optimize_gpu_settings() | |
install_flash_attn() | |
from huggingface_hub import snapshot_download | |
folder_path = './inference/xcodec_mini_infer' | |
os.makedirs(folder_path, exist_ok=True) | |
logging.info(f"Created folder at: {folder_path}") | |
snapshot_download( | |
repo_id="m-a-p/xcodec_mini_infer", | |
local_dir="./inference/xcodec_mini_infer", | |
resume_download=True | |
) | |
try: | |
os.chdir("./inference") | |
logging.info(f"Working directory changed to: {os.getcwd()}") | |
except FileNotFoundError as e: | |
logging.error(f"Directory error: {e}") | |
raise | |
def get_cached_file_path(content_hash, prefix): | |
return create_temp_file(content_hash, prefix) | |
def empty_output_folder(output_dir): | |
try: | |
shutil.rmtree(output_dir) | |
os.makedirs(output_dir) | |
logging.info(f"Output folder cleaned: {output_dir}") | |
except Exception as e: | |
logging.error(f"Error cleaning output folder: {e}") | |
raise | |
def create_temp_file(content, prefix, suffix=".txt"): | |
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) | |
content = content.strip() + "\n\n" | |
content = content.replace("\r\n", "\n").replace("\r", "\n") | |
temp_file.write(content) | |
temp_file.close() | |
logging.debug(f"Temporary file created: {temp_file.name}") | |
return temp_file.name | |
def get_last_mp3_file(output_dir): | |
mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')] | |
if not mp3_files: | |
logging.warning("No MP3 files found") | |
return None | |
mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files] | |
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True) | |
return mp3_files_with_path[0] | |
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): | |
try: | |
# λͺ¨λΈ μ ν λ° μ€μ | |
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content) | |
logging.info(f"Selected model: {model_path}") | |
logging.info(f"Lyrics analysis: {params}") | |
# μ€μ μ¬μ©ν νλΌλ―Έν° | |
actual_num_segments = config['num_segments'] | |
actual_max_tokens = config['max_tokens'] | |
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}") | |
# μμ νμΌ μμ± | |
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_") | |
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_") | |
output_dir = "./output" | |
os.makedirs(output_dir, exist_ok=True) | |
empty_output_folder(output_dir) | |
# λͺ λ Ήμ΄ κ΅¬μ± | |
command = [ | |
"python", "infer.py", | |
"--stage1_model", model_path, | |
"--stage2_model", "m-a-p/YuE-s2-1B-general", | |
"--genre_txt", genre_txt_path, | |
"--lyrics_txt", lyrics_txt_path, | |
"--run_n_segments", str(actual_num_segments), | |
"--stage2_batch_size", str(config['batch_size']), | |
"--output_dir", output_dir, | |
"--cuda_idx", "0", | |
"--max_new_tokens", str(actual_max_tokens), | |
"--temperature", str(config['temperature']), | |
"--disable_offload_model", | |
"--use_flash_attention_2", | |
"--bf16", | |
"--chorus_strength", str(config['chorus_strength']) | |
] | |
# CUDA νκ²½ λ³μ μ€μ | |
env = os.environ.copy() | |
env.update({ | |
"CUDA_VISIBLE_DEVICES": "0", | |
"CUDA_HOME": "/usr/local/cuda", | |
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}", | |
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}", | |
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512" | |
}) | |
# λͺ λ Ή μ€ν | |
process = subprocess.run(command, env=env, check=True, capture_output=True) | |
logging.info("Inference completed successfully") | |
# κ²°κ³Ό μ²λ¦¬ | |
last_mp3 = get_last_mp3_file(output_dir) | |
if last_mp3: | |
logging.info(f"Generated audio file: {last_mp3}") | |
return last_mp3 | |
else: | |
logging.warning("No output audio file generated") | |
return None | |
except Exception as e: | |
logging.error(f"Inference error: {e}") | |
raise | |
finally: | |
# μμ νμΌ μ 리 | |
for file in [genre_txt_path, lyrics_txt_path]: | |
try: | |
os.remove(file) | |
logging.debug(f"Removed temporary file: {file}") | |
except Exception as e: | |
logging.warning(f"Failed to remove temporary file {file}: {e}") | |
# Gradio μΈν°νμ΄μ€ | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation (Multi-Language Support)") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href="https://github.com/multimodal-art-projection/YuE"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
<a href="https://map-yue.github.io"> | |
<img src='https://img.shields.io/badge/Project-Page-green'> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
genre_txt = gr.Textbox( | |
label="Genre", | |
placeholder="Enter music genre and style descriptions..." | |
) | |
lyrics_txt = gr.Textbox( | |
label="Lyrics (Supports English, Korean, Japanese, Chinese)", | |
placeholder="Enter song lyrics with [verse], [chorus], [bridge] tags...", | |
lines=10 | |
) | |
with gr.Column(): | |
num_segments = gr.Number( | |
label="Number of Song Segments (Auto-adjusted based on lyrics)", | |
value=2, | |
minimum=1, | |
maximum=4, | |
step=1, | |
interactive=False | |
) | |
max_new_tokens = gr.Slider( | |
label="Max New Tokens (Auto-adjusted based on lyrics)", | |
minimum=500, | |
maximum=32000, | |
step=500, | |
value=4000, | |
interactive=False | |
) | |
submit_btn = gr.Button("Generate Music", variant="primary") | |
music_out = gr.Audio(label="Generated Audio") | |
# λ€κ΅μ΄ μμ | |
gr.Examples( | |
examples=[ | |
# μμ΄ μμ | |
[ | |
"female blues airy vocal bright vocal piano sad romantic guitar jazz", | |
"""[verse] | |
In the quiet of the evening, shadows start to fall | |
Whispers of the night wind echo through the hall | |
Lost within the silence, I hear your gentle voice | |
Guiding me back homeward, making my heart rejoice | |
[chorus] | |
Don't let this moment fade, hold me close tonight | |
With you here beside me, everything's alright | |
Can't imagine life alone, don't want to let you go | |
Stay with me forever, let our love just flow | |
[verse] | |
Morning light is breaking, through the window pane | |
Memories of yesterday, like soft summer rain | |
In your arms I'm finding, all I'm dreaming of | |
Every day beside you, fills my heart with love | |
[chorus] | |
Don't let this moment fade, hold me close tonight | |
With you here beside me, everything's alright | |
Can't imagine life alone, don't want to let you go | |
Stay with me forever, let our love just flow | |
""" | |
], | |
# νκ΅μ΄ μμ | |
[ | |
"K-pop bright energetic synth dance electronic", | |
"""[verse] | |
λΉλλ λ³λ€μ²λΌ μ°λ¦¬μ κΏμ΄ | |
μ νλμ μλμ λ°μ§μ΄λ€ | |
ν¨κ»λΌλ©΄ μ΄λλ κ° μ μμ΄ | |
μ°λ¦¬μ μ΄μΌκΈ°κ° μμλλ€ | |
[chorus] | |
λ¬λ €κ°μ λ λμ΄ λ λ©λ¦¬ | |
λλ €μμ μμ΄ λμ ν¨κ»λΌλ©΄ | |
μμν κ³μλ μ°λ¦¬μ λ Έλ | |
μ΄ μκ°μ κΈ°μ΅ν΄ forever | |
[verse] | |
μλ‘μ΄ λ΄μΌμ ν₯ν΄ λμκ° | |
μ°λ¦¬λ§μ κΈΈμ λ§λ€μ΄κ° | |
λ―ΏμμΌλ‘ κ°λν μ°λ¦¬μ λ§ | |
μ λ λ©μΆμ§ μμ κ³μν΄μ | |
[chorus] | |
λ¬λ €κ°μ λ λμ΄ λ λ©λ¦¬ | |
λλ €μμ μμ΄ λμ ν¨κ»λΌλ©΄ | |
μμν κ³μλ μ°λ¦¬μ λ Έλ | |
μ΄ μκ°μ κΈ°μ΅ν΄ forever | |
""" | |
] | |
], | |
inputs=[genre_txt, lyrics_txt] | |
) | |
# μμ€ν μ΄κΈ°ν | |
initialize_system() | |
# μ΄λ²€νΈ νΈλ€λ¬ | |
submit_btn.click( | |
fn=infer, | |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], | |
outputs=[music_out] | |
) | |
# μλ² μ€μ μΌλ‘ μ€ν | |
demo.queue(concurrency_count=2).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
enable_queue=True, | |
show_api=True, | |
show_error=True | |
) |