Spaces:
Running
Running
| import gradio as gr | |
| import uuid | |
| from io_utils import ( | |
| read_scanners, | |
| write_scanners, | |
| read_inference_type, | |
| get_logs_file, | |
| write_inference_type, | |
| ) | |
| from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD | |
| from text_classification_ui_helpers import ( | |
| try_submit, | |
| check_dataset_and_get_config, | |
| check_dataset_and_get_split, | |
| check_model_and_show_prediction, | |
| write_column_mapping_to_config, | |
| select_run_mode, | |
| deselect_run_inference, | |
| ) | |
| MAX_LABELS = 20 | |
| MAX_FEATURES = 20 | |
| EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest" | |
| EXAMPLE_DATA_ID = "tweet_eval" | |
| CONFIG_PATH = "./config.yaml" | |
| def get_demo(demo): | |
| uid = uuid.uuid4() | |
| with gr.Row(): | |
| gr.Markdown(INTRODUCTION_MD) | |
| uid_label = gr.Textbox( | |
| label="Evaluation ID:", value=uid, visible=False, interactive=False | |
| ) | |
| with gr.Row(): | |
| model_id_input = gr.Textbox( | |
| label="Hugging Face model id", | |
| placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)", | |
| ) | |
| dataset_id_input = gr.Textbox( | |
| label="Hugging Face Dataset id", | |
| placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)", | |
| ) | |
| with gr.Row(): | |
| dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False) | |
| dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False) | |
| with gr.Row(): | |
| example_input = gr.Markdown("Example Input", visible=False) | |
| with gr.Row(): | |
| example_prediction = gr.Label(label="Model Prediction Sample", visible=False) | |
| with gr.Row(): | |
| with gr.Accordion( | |
| label="Label and Feature Mapping", visible=False, open=False | |
| ) as column_mapping_accordion: | |
| with gr.Row(): | |
| gr.Markdown(CONFIRM_MAPPING_DETAILS_MD) | |
| column_mappings = [] | |
| with gr.Row(): | |
| with gr.Column(): | |
| for _ in range(MAX_LABELS): | |
| column_mappings.append(gr.Dropdown(visible=False)) | |
| with gr.Column(): | |
| for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES): | |
| column_mappings.append(gr.Dropdown(visible=False)) | |
| with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False): | |
| run_local = gr.Checkbox(value=True, label="Run in this Space") | |
| use_inference = read_inference_type(uid) == "hf_inference_api" | |
| run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API") | |
| inference_token = gr.Textbox(value="", label="HF Token for Inference API", visible=False, interactive=True) | |
| with gr.Accordion(label="Scanner Advance Config (optional)", open=False): | |
| selected = read_scanners(uid) | |
| # currently we remove data_leakage from the default scanners | |
| # Reason: data_leakage barely raises any issues and takes too many requests | |
| # when using inference API, causing rate limit error | |
| scan_config = selected + ["data_leakage"] | |
| scanners = gr.CheckboxGroup( | |
| choices=scan_config, value=selected, label="Scan Settings", visible=True | |
| ) | |
| with gr.Row(): | |
| run_btn = gr.Button( | |
| "Get Evaluation Result", | |
| variant="primary", | |
| interactive=True, | |
| size="lg", | |
| ) | |
| with gr.Row(): | |
| logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False) | |
| demo.load(get_logs_file, uid_label, logs, every=0.5) | |
| dataset_id_input.change( | |
| check_dataset_and_get_config, | |
| inputs=[dataset_id_input, uid_label], outputs=[dataset_config_input] | |
| ) | |
| dataset_config_input.change( | |
| check_dataset_and_get_split, | |
| inputs=[dataset_id_input, dataset_config_input], | |
| outputs=[dataset_split_input], | |
| ) | |
| scanners.change(write_scanners, inputs=[scanners, uid_label]) | |
| run_inference.change( | |
| select_run_mode, | |
| inputs=[run_inference, inference_token, uid_label], | |
| outputs=[inference_token, run_local]) | |
| run_local.change( | |
| deselect_run_inference, | |
| inputs=[run_local], | |
| outputs=[inference_token, run_inference]) | |
| inference_token.change( | |
| write_inference_type, | |
| inputs=[run_inference, inference_token, uid_label]) | |
| gr.on( | |
| triggers=[label.change for label in column_mappings], | |
| fn=write_column_mapping_to_config, | |
| inputs=[ | |
| dataset_id_input, | |
| dataset_config_input, | |
| dataset_split_input, | |
| uid_label, | |
| *column_mappings, | |
| ], | |
| ) | |
| # label.change sometimes does not pass the changed value | |
| gr.on( | |
| triggers=[label.input for label in column_mappings], | |
| fn=write_column_mapping_to_config, | |
| inputs=[ | |
| dataset_id_input, | |
| dataset_config_input, | |
| dataset_split_input, | |
| uid_label, | |
| *column_mappings, | |
| ], | |
| ) | |
| gr.on( | |
| triggers=[ | |
| model_id_input.change, | |
| dataset_id_input.change, | |
| dataset_config_input.change, | |
| dataset_split_input.change, | |
| ], | |
| fn=check_model_and_show_prediction, | |
| inputs=[ | |
| model_id_input, | |
| dataset_id_input, | |
| dataset_config_input, | |
| dataset_split_input, | |
| ], | |
| outputs=[ | |
| example_input, | |
| example_prediction, | |
| column_mapping_accordion, | |
| *column_mappings, | |
| ], | |
| ) | |
| gr.on( | |
| triggers=[ | |
| run_btn.click, | |
| ], | |
| fn=try_submit, | |
| inputs=[ | |
| model_id_input, | |
| dataset_id_input, | |
| dataset_config_input, | |
| dataset_split_input, | |
| run_local, | |
| uid_label, | |
| ], | |
| outputs=[run_btn, logs], | |
| ) | |
| def enable_run_btn(): | |
| return gr.update(interactive=True) | |
| gr.on( | |
| triggers=[ | |
| model_id_input.change, | |
| dataset_config_input.change, | |
| dataset_split_input.change, | |
| run_inference.change, | |
| run_local.change, | |
| scanners.change, | |
| ], | |
| fn=enable_run_btn, | |
| inputs=None, | |
| outputs=[run_btn], | |
| ) | |
| gr.on( | |
| triggers=[label.change for label in column_mappings], | |
| fn=enable_run_btn, | |
| inputs=None, | |
| outputs=[run_btn], | |
| ) | |