Spaces:
Running
Running
Commit
·
3573a39
1
Parent(s):
970a44b
Format with black and fix import
Browse files- app.py +5 -6
- app_leaderboard.py +68 -33
- app_legacy.py +344 -159
- app_text_classification.py +105 -60
- fetch_utils.py +11 -4
- io_utils.py +22 -9
- mlflow_test.py +20 -0
- run_jobs.py +10 -5
- text_classification.py +83 -42
- text_classification_ui_helpers.py +113 -48
- validate_queue.py +24 -0
- wordings.py +8 -8
app.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
import gradio as gr
|
| 3 |
-
|
| 4 |
-
from app_text_classification import get_demo as get_demo_text_classification
|
| 5 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
|
|
|
| 6 |
from run_jobs import start_process_run_job, stop_thread
|
| 7 |
-
import threading
|
| 8 |
|
| 9 |
if threading.current_thread() is not threading.main_thread():
|
| 10 |
t = threading.current_thread()
|
|
@@ -14,7 +15,7 @@ try:
|
|
| 14 |
get_demo_text_classification(demo)
|
| 15 |
with gr.Tab("Leaderboard"):
|
| 16 |
get_demo_leaderboard()
|
| 17 |
-
|
| 18 |
start_process_run_job()
|
| 19 |
|
| 20 |
demo.queue(max_size=100)
|
|
@@ -24,5 +25,3 @@ try:
|
|
| 24 |
except Exception:
|
| 25 |
print("stop background thread")
|
| 26 |
stop_thread()
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 1 |
+
import atexit
|
| 2 |
+
import threading
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
+
|
|
|
|
| 6 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
| 7 |
+
from app_text_classification import get_demo as get_demo_text_classification
|
| 8 |
from run_jobs import start_process_run_job, stop_thread
|
|
|
|
| 9 |
|
| 10 |
if threading.current_thread() is not threading.main_thread():
|
| 11 |
t = threading.current_thread()
|
|
|
|
| 15 |
get_demo_text_classification(demo)
|
| 16 |
with gr.Tab("Leaderboard"):
|
| 17 |
get_demo_leaderboard()
|
| 18 |
+
|
| 19 |
start_process_run_job()
|
| 20 |
|
| 21 |
demo.queue(max_size=100)
|
|
|
|
| 25 |
except Exception:
|
| 26 |
print("stop background thread")
|
| 27 |
stop_thread()
|
|
|
|
|
|
app_leaderboard.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import datasets
|
| 3 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from fetch_utils import check_dataset_and_get_config, check_dataset_and_get_split
|
| 5 |
|
|
|
|
| 6 |
def get_records_from_dataset_repo(dataset_id):
|
| 7 |
dataset_config = check_dataset_and_get_config(dataset_id)
|
| 8 |
|
|
@@ -15,83 +18,115 @@ def get_records_from_dataset_repo(dataset_id):
|
|
| 15 |
df = ds.to_pandas()
|
| 16 |
return df
|
| 17 |
except Exception as e:
|
| 18 |
-
logging.warning(
|
|
|
|
|
|
|
| 19 |
return None
|
| 20 |
|
|
|
|
| 21 |
def get_model_ids(ds):
|
| 22 |
logging.info(f"Dataset {ds} column names: {ds['model_id']}")
|
| 23 |
-
models = ds[
|
| 24 |
# return unique elements in the list model_ids
|
| 25 |
model_ids = list(set(models))
|
| 26 |
return model_ids
|
| 27 |
|
|
|
|
| 28 |
def get_dataset_ids(ds):
|
| 29 |
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
|
| 30 |
-
datasets = ds[
|
| 31 |
dataset_ids = list(set(datasets))
|
| 32 |
return dataset_ids
|
| 33 |
|
|
|
|
| 34 |
def get_types(ds):
|
| 35 |
# set types for each column
|
| 36 |
types = [str(t) for t in ds.dtypes.to_list()]
|
| 37 |
-
types = [t.replace(
|
| 38 |
-
types = [t.replace(
|
| 39 |
-
types = [t.replace(
|
| 40 |
return types
|
| 41 |
|
|
|
|
| 42 |
def get_display_df(df):
|
| 43 |
# style all elements in the model_id column
|
| 44 |
display_df = df.copy()
|
| 45 |
columns = display_df.columns.tolist()
|
| 46 |
-
if
|
| 47 |
-
display_df[
|
|
|
|
|
|
|
| 48 |
# style all elements in the dataset_id column
|
| 49 |
-
if
|
| 50 |
-
display_df[
|
|
|
|
|
|
|
| 51 |
# style all elements in the report_link column
|
| 52 |
-
if
|
| 53 |
-
display_df[
|
|
|
|
|
|
|
| 54 |
return display_df
|
| 55 |
|
|
|
|
| 56 |
def get_demo():
|
| 57 |
-
records = get_records_from_dataset_repo(
|
| 58 |
|
| 59 |
model_ids = get_model_ids(records)
|
| 60 |
dataset_ids = get_dataset_ids(records)
|
| 61 |
|
| 62 |
column_names = records.columns.tolist()
|
| 63 |
-
default_columns = [
|
| 64 |
-
default_df = records[default_columns]
|
| 65 |
types = get_types(default_df)
|
| 66 |
-
display_df = get_display_df(default_df)
|
| 67 |
|
| 68 |
with gr.Row():
|
| 69 |
-
task_select = gr.Dropdown(
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
with gr.Row():
|
| 74 |
-
columns_select = gr.CheckboxGroup(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
with gr.Row():
|
| 77 |
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)
|
| 78 |
-
|
| 79 |
-
@gr.on(
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def filter_table(model_id, dataset_id, columns, task):
|
| 83 |
# filter the table based on task
|
| 84 |
-
df = records[(records[
|
| 85 |
# filter the table based on the model_id and dataset_id
|
| 86 |
if model_id:
|
| 87 |
-
df = records[(records[
|
| 88 |
if dataset_id:
|
| 89 |
-
df = records[(records[
|
| 90 |
|
| 91 |
# filter the table based on the columns
|
| 92 |
df = df[columns]
|
| 93 |
types = get_types(df)
|
| 94 |
display_df = get_display_df(df)
|
| 95 |
-
return (
|
| 96 |
-
gr.update(value=display_df, datatype=types, interactive=False)
|
| 97 |
-
)
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
from fetch_utils import check_dataset_and_get_config, check_dataset_and_get_split
|
| 7 |
|
| 8 |
+
|
| 9 |
def get_records_from_dataset_repo(dataset_id):
|
| 10 |
dataset_config = check_dataset_and_get_config(dataset_id)
|
| 11 |
|
|
|
|
| 18 |
df = ds.to_pandas()
|
| 19 |
return df
|
| 20 |
except Exception as e:
|
| 21 |
+
logging.warning(
|
| 22 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
| 23 |
+
)
|
| 24 |
return None
|
| 25 |
|
| 26 |
+
|
| 27 |
def get_model_ids(ds):
|
| 28 |
logging.info(f"Dataset {ds} column names: {ds['model_id']}")
|
| 29 |
+
models = ds["model_id"].tolist()
|
| 30 |
# return unique elements in the list model_ids
|
| 31 |
model_ids = list(set(models))
|
| 32 |
return model_ids
|
| 33 |
|
| 34 |
+
|
| 35 |
def get_dataset_ids(ds):
|
| 36 |
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
|
| 37 |
+
datasets = ds["dataset_id"].tolist()
|
| 38 |
dataset_ids = list(set(datasets))
|
| 39 |
return dataset_ids
|
| 40 |
|
| 41 |
+
|
| 42 |
def get_types(ds):
|
| 43 |
# set types for each column
|
| 44 |
types = [str(t) for t in ds.dtypes.to_list()]
|
| 45 |
+
types = [t.replace("object", "markdown") for t in types]
|
| 46 |
+
types = [t.replace("float64", "number") for t in types]
|
| 47 |
+
types = [t.replace("int64", "number") for t in types]
|
| 48 |
return types
|
| 49 |
|
| 50 |
+
|
| 51 |
def get_display_df(df):
|
| 52 |
# style all elements in the model_id column
|
| 53 |
display_df = df.copy()
|
| 54 |
columns = display_df.columns.tolist()
|
| 55 |
+
if "model_id" in columns:
|
| 56 |
+
display_df["model_id"] = display_df["model_id"].apply(
|
| 57 |
+
lambda x: f'<p href="https://huggingface.co/{x}" style="color:blue">🔗{x}</p>
|
| 58 |
+
')
|
| 59 |
# style all elements in the dataset_id column
|
| 60 |
+
if "dataset_id" in columns:
|
| 61 |
+
display_df["dataset_id"] = display_df["dataset_id"].apply(
|
| 62 |
+
lambda x: f'<p href="https://huggingface.co/datasets/{x}" style="color:blue">🔗{x}</p>
|
| 63 |
+
')
|
| 64 |
# style all elements in the report_link column
|
| 65 |
+
if "report_link" in columns:
|
| 66 |
+
display_df["report_link"] = display_df["report_link"].apply(
|
| 67 |
+
lambda x: f'<p href="{x}" style="color:blue">🔗{x}</p>'
|
| 68 |
+
)
|
| 69 |
return display_df
|
| 70 |
|
| 71 |
+
|
| 72 |
def get_demo():
|
| 73 |
+
records = get_records_from_dataset_repo("ZeroCommand/test-giskard-report")
|
| 74 |
|
| 75 |
model_ids = get_model_ids(records)
|
| 76 |
dataset_ids = get_dataset_ids(records)
|
| 77 |
|
| 78 |
column_names = records.columns.tolist()
|
| 79 |
+
default_columns = ["model_id", "dataset_id", "total_issues", "report_link"]
|
| 80 |
+
default_df = records[default_columns] # extract columns selected
|
| 81 |
types = get_types(default_df)
|
| 82 |
+
display_df = get_display_df(default_df) # the styled dataframe to display
|
| 83 |
|
| 84 |
with gr.Row():
|
| 85 |
+
task_select = gr.Dropdown(
|
| 86 |
+
label="Task",
|
| 87 |
+
choices=["text_classification", "tabular"],
|
| 88 |
+
value="text_classification",
|
| 89 |
+
interactive=True,
|
| 90 |
+
)
|
| 91 |
+
model_select = gr.Dropdown(
|
| 92 |
+
label="Model id", choices=model_ids, interactive=True
|
| 93 |
+
)
|
| 94 |
+
dataset_select = gr.Dropdown(
|
| 95 |
+
label="Dataset id", choices=dataset_ids, interactive=True
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
with gr.Row():
|
| 99 |
+
columns_select = gr.CheckboxGroup(
|
| 100 |
+
label="Show columns",
|
| 101 |
+
choices=column_names,
|
| 102 |
+
value=default_columns,
|
| 103 |
+
interactive=True,
|
| 104 |
+
)
|
| 105 |
|
| 106 |
with gr.Row():
|
| 107 |
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)
|
| 108 |
+
|
| 109 |
+
@gr.on(
|
| 110 |
+
triggers=[
|
| 111 |
+
model_select.change,
|
| 112 |
+
dataset_select.change,
|
| 113 |
+
columns_select.change,
|
| 114 |
+
task_select.change,
|
| 115 |
+
],
|
| 116 |
+
inputs=[model_select, dataset_select, columns_select, task_select],
|
| 117 |
+
outputs=[leaderboard_df],
|
| 118 |
+
)
|
| 119 |
def filter_table(model_id, dataset_id, columns, task):
|
| 120 |
# filter the table based on task
|
| 121 |
+
df = records[(records["task"] == task)]
|
| 122 |
# filter the table based on the model_id and dataset_id
|
| 123 |
if model_id:
|
| 124 |
+
df = records[(records["model_id"] == model_id)]
|
| 125 |
if dataset_id:
|
| 126 |
+
df = records[(records["dataset_id"] == dataset_id)]
|
| 127 |
|
| 128 |
# filter the table based on the columns
|
| 129 |
df = df[columns]
|
| 130 |
types = get_types(df)
|
| 131 |
display_df = get_display_df(df)
|
| 132 |
+
return gr.update(value=display_df, datatype=types, interactive=False)
|
|
|
|
|
|
app_legacy.py
CHANGED
|
@@ -1,22 +1,31 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import huggingface_hub
|
| 4 |
import os
|
| 5 |
-
import time
|
| 6 |
import subprocess
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
import json
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
from transformers.pipelines import TextClassificationPipeline
|
| 12 |
|
| 13 |
-
from
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
HF_REPO_ID = 'HF_REPO_ID'
|
| 18 |
-
HF_SPACE_ID = 'SPACE_ID'
|
| 19 |
-
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
| 20 |
|
| 21 |
def check_model(model_id):
|
| 22 |
try:
|
|
@@ -26,6 +35,7 @@ def check_model(model_id):
|
|
| 26 |
|
| 27 |
try:
|
| 28 |
from transformers import pipeline
|
|
|
|
| 29 |
ppl = pipeline(task=task, model=model_id)
|
| 30 |
|
| 31 |
return model_id, ppl
|
|
@@ -55,55 +65,70 @@ def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
|
| 55 |
return dataset_id, None, None
|
| 56 |
return dataset_id, dataset_config, dataset_split
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
# Validate model
|
| 60 |
if m_id is None:
|
| 61 |
-
gr.Warning(
|
|
|
|
|
|
|
| 62 |
return (
|
| 63 |
-
gr.update(interactive=False),
|
| 64 |
-
gr.update(visible=True),
|
| 65 |
-
gr.update(visible=False),
|
| 66 |
-
gr.update(visible=False),
|
| 67 |
-
gr.update(visible=False),
|
| 68 |
-
gr.update(visible=False),
|
| 69 |
-
gr.update(visible=False),
|
| 70 |
)
|
| 71 |
if isinstance(ppl, Exception):
|
| 72 |
gr.Warning(f'Failed to load model": {ppl}')
|
| 73 |
return (
|
| 74 |
-
gr.update(interactive=False),
|
| 75 |
-
gr.update(visible=True),
|
| 76 |
-
gr.update(visible=False),
|
| 77 |
-
gr.update(visible=False),
|
| 78 |
-
gr.update(visible=False),
|
| 79 |
-
gr.update(visible=False),
|
| 80 |
-
gr.update(visible=False),
|
| 81 |
)
|
| 82 |
|
| 83 |
# Validate dataset
|
| 84 |
-
d_id, config, split = check_dataset(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
dataset_ok = False
|
| 87 |
if d_id is None:
|
| 88 |
-
gr.Warning(
|
|
|
|
|
|
|
| 89 |
elif isinstance(config, list):
|
| 90 |
-
gr.Warning(
|
|
|
|
|
|
|
| 91 |
config = gr.update(choices=config, value=config[0])
|
| 92 |
elif isinstance(split, list):
|
| 93 |
-
gr.Warning(
|
|
|
|
|
|
|
| 94 |
split = gr.update(choices=split, value=split[0])
|
| 95 |
else:
|
| 96 |
dataset_ok = True
|
| 97 |
|
| 98 |
if not dataset_ok:
|
| 99 |
return (
|
| 100 |
-
gr.update(interactive=False),
|
| 101 |
-
gr.update(visible=True),
|
| 102 |
-
gr.update(visible=False),
|
| 103 |
-
gr.update(visible=False),
|
| 104 |
-
gr.update(visible=False),
|
| 105 |
-
gr.update(visible=False),
|
| 106 |
-
gr.update(visible=False),
|
| 107 |
)
|
| 108 |
|
| 109 |
# TODO: Validate column mapping by running once
|
|
@@ -115,55 +140,94 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
| 115 |
except Exception:
|
| 116 |
column_mapping = {}
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
column_mapping = json.dumps(column_mapping, indent=2)
|
| 122 |
|
| 123 |
if prediction_result is None and id2label_df is not None:
|
| 124 |
-
gr.Warning(
|
|
|
|
|
|
|
| 125 |
return (
|
| 126 |
-
gr.update(interactive=False),
|
| 127 |
-
gr.update(visible=False),
|
| 128 |
-
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),
|
| 129 |
-
gr.update(
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
gr.update(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
)
|
| 134 |
elif id2label_df is None:
|
| 135 |
-
gr.Warning(
|
|
|
|
|
|
|
| 136 |
return (
|
| 137 |
-
gr.update(interactive=False),
|
| 138 |
-
gr.update(visible=False),
|
| 139 |
-
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),
|
| 140 |
-
gr.update(
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
gr.update(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
-
gr.Info(
|
|
|
|
|
|
|
| 147 |
|
| 148 |
return (
|
| 149 |
-
gr.update(interactive=True),
|
| 150 |
-
gr.update(visible=False),
|
| 151 |
-
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),
|
| 152 |
-
gr.update(
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
gr.update(value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
|
| 159 |
-
def try_submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
label_mapping = {}
|
| 161 |
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
| 162 |
label_mapping.update({str(i): label})
|
| 163 |
-
|
| 164 |
feature_mapping = {}
|
| 165 |
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
| 166 |
-
feature_mapping.update(
|
|
|
|
|
|
|
| 167 |
|
| 168 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
| 169 |
|
|
@@ -171,18 +235,30 @@ def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_ma
|
|
| 171 |
command = [
|
| 172 |
"python",
|
| 173 |
"cli.py",
|
| 174 |
-
"--loader",
|
| 175 |
-
"
|
| 176 |
-
"--
|
| 177 |
-
|
| 178 |
-
"--
|
| 179 |
-
|
| 180 |
-
"--
|
| 181 |
-
|
| 182 |
-
"--
|
| 183 |
-
|
| 184 |
-
"--
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
]
|
| 187 |
|
| 188 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
|
@@ -196,12 +272,16 @@ def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_ma
|
|
| 196 |
)
|
| 197 |
result = evaluator.wait()
|
| 198 |
|
| 199 |
-
logging.info(
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
gr.Info(
|
|
|
|
|
|
|
| 202 |
else:
|
| 203 |
gr.Info("TODO: Submit task to an endpoint")
|
| 204 |
-
|
| 205 |
return gr.update(interactive=True) # Submit button
|
| 206 |
|
| 207 |
|
|
@@ -224,56 +304,82 @@ def get_demo():
|
|
| 224 |
return gr.Dropdown(splits, value=splits[0], visible=True)
|
| 225 |
except Exception as e:
|
| 226 |
# Dataset may not exist
|
| 227 |
-
gr.Warning(
|
| 228 |
-
|
| 229 |
-
|
|
|
|
| 230 |
def clear_column_mapping_tables():
|
| 231 |
return [
|
| 232 |
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
| 233 |
gr.update(value=[], visible=False, interactive=True),
|
| 234 |
gr.update(value=[], visible=False, interactive=True),
|
| 235 |
]
|
| 236 |
-
|
| 237 |
-
def gate_validate_btn(
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
_, ppl = check_model(model_id=model_id)
|
| 240 |
|
| 241 |
if id2label_mapping_dataframe is not None:
|
| 242 |
-
labels = convert_column_mapping_to_json(
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
column_mapping = json.dumps({**labels, **features}, indent=2)
|
| 245 |
|
| 246 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
| 247 |
-
gr.Warning(
|
| 248 |
-
return (
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
| 255 |
else:
|
| 256 |
if model_id and dataset_id and dataset_config and dataset_split:
|
| 257 |
-
return try_validate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
else:
|
| 259 |
-
return (
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
| 266 |
with gr.Row():
|
| 267 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
| 268 |
with gr.Row():
|
| 269 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
| 270 |
-
use_inference = read_inference_type(
|
| 271 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
| 272 |
-
|
| 273 |
with gr.Row():
|
| 274 |
-
selected = read_scanners(
|
| 275 |
-
scan_config = selected + [
|
| 276 |
-
scanners = gr.CheckboxGroup(
|
|
|
|
|
|
|
| 277 |
|
| 278 |
with gr.Row():
|
| 279 |
model_id_input = gr.Textbox(
|
|
@@ -286,75 +392,154 @@ def get_demo():
|
|
| 286 |
placeholder="tweet_eval",
|
| 287 |
)
|
| 288 |
with gr.Row():
|
| 289 |
-
dataset_config_input = gr.Dropdown(label=
|
| 290 |
-
dataset_split_input = gr.Dropdown(label=
|
| 291 |
-
|
| 292 |
with gr.Row(visible=True) as loading_row:
|
| 293 |
-
gr.Markdown(
|
|
|
|
| 294 |
<p style="text-align: center;">
|
| 295 |
🚀🐢Please validate your model and dataset first...
|
| 296 |
</p>
|
| 297 |
-
|
| 298 |
-
|
|
|
|
| 299 |
with gr.Row(visible=False) as preview_row:
|
| 300 |
-
gr.Markdown(
|
|
|
|
| 301 |
<h1 style="text-align: center;">
|
| 302 |
Confirm Pre-processing Details
|
| 303 |
</h1>
|
| 304 |
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
| 305 |
-
|
| 306 |
-
|
|
|
|
| 307 |
with gr.Row():
|
| 308 |
-
id2label_mapping_dataframe = gr.DataFrame(
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
with gr.Row():
|
| 311 |
-
example_input = gr.Markdown(
|
| 312 |
-
|
| 313 |
with gr.Row():
|
| 314 |
-
example_labels = gr.Label(label=
|
| 315 |
-
|
| 316 |
run_btn = gr.Button(
|
| 317 |
"Get Evaluation Result",
|
| 318 |
variant="primary",
|
| 319 |
interactive=False,
|
| 320 |
size="lg",
|
| 321 |
)
|
| 322 |
-
|
| 323 |
-
model_id_input.blur(clear_column_mapping_tables, outputs=[id2label_mapping_dataframe, feature_mapping_dataframe])
|
| 324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
dataset_id_input.blur(
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
dataset_config_input.change(
|
| 330 |
-
check_dataset_and_get_split,
|
| 331 |
-
inputs=[dataset_config_input, dataset_id_input],
|
| 332 |
-
outputs=[dataset_split_input]
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
| 338 |
-
# dataset_id_input.blur(gate_validate_btn,
|
| 339 |
-
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
| 340 |
-
|
| 341 |
-
dataset_config_input.change(
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
| 357 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
run_btn.click(
|
| 360 |
try_submit,
|
|
@@ -370,4 +555,4 @@ def get_demo():
|
|
| 370 |
outputs=[
|
| 371 |
run_btn,
|
| 372 |
],
|
| 373 |
-
)
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
|
|
|
| 3 |
import os
|
|
|
|
| 4 |
import subprocess
|
| 5 |
+
import time
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
import datasets
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import huggingface_hub
|
| 10 |
from transformers.pipelines import TextClassificationPipeline
|
| 11 |
|
| 12 |
+
from io_utils import (
|
| 13 |
+
convert_column_mapping_to_json,
|
| 14 |
+
read_inference_type,
|
| 15 |
+
read_scanners,
|
| 16 |
+
write_inference_type,
|
| 17 |
+
write_scanners,
|
| 18 |
+
)
|
| 19 |
+
from text_classification import (
|
| 20 |
+
check_column_mapping_keys_validity,
|
| 21 |
+
text_classification_fix_column_mapping,
|
| 22 |
+
)
|
| 23 |
+
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_MD
|
| 24 |
+
|
| 25 |
+
HF_REPO_ID = "HF_REPO_ID"
|
| 26 |
+
HF_SPACE_ID = "SPACE_ID"
|
| 27 |
+
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def check_model(model_id):
|
| 31 |
try:
|
|
|
|
| 35 |
|
| 36 |
try:
|
| 37 |
from transformers import pipeline
|
| 38 |
+
|
| 39 |
ppl = pipeline(task=task, model=model_id)
|
| 40 |
|
| 41 |
return model_id, ppl
|
|
|
|
| 65 |
return dataset_id, None, None
|
| 66 |
return dataset_id, dataset_config, dataset_split
|
| 67 |
|
| 68 |
+
|
| 69 |
+
def try_validate(
|
| 70 |
+
m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping="{}"
|
| 71 |
+
):
|
| 72 |
# Validate model
|
| 73 |
if m_id is None:
|
| 74 |
+
gr.Warning(
|
| 75 |
+
"Model is not accessible. Please set your HF_TOKEN if it is a private model."
|
| 76 |
+
)
|
| 77 |
return (
|
| 78 |
+
gr.update(interactive=False), # Submit button
|
| 79 |
+
gr.update(visible=True), # Loading row
|
| 80 |
+
gr.update(visible=False), # Preview row
|
| 81 |
+
gr.update(visible=False), # Model prediction input
|
| 82 |
+
gr.update(visible=False), # Model prediction preview
|
| 83 |
+
gr.update(visible=False), # Label mapping preview
|
| 84 |
+
gr.update(visible=False), # feature mapping preview
|
| 85 |
)
|
| 86 |
if isinstance(ppl, Exception):
|
| 87 |
gr.Warning(f'Failed to load model": {ppl}')
|
| 88 |
return (
|
| 89 |
+
gr.update(interactive=False), # Submit button
|
| 90 |
+
gr.update(visible=True), # Loading row
|
| 91 |
+
gr.update(visible=False), # Preview row
|
| 92 |
+
gr.update(visible=False), # Model prediction input
|
| 93 |
+
gr.update(visible=False), # Model prediction preview
|
| 94 |
+
gr.update(visible=False), # Label mapping preview
|
| 95 |
+
gr.update(visible=False), # feature mapping preview
|
| 96 |
)
|
| 97 |
|
| 98 |
# Validate dataset
|
| 99 |
+
d_id, config, split = check_dataset(
|
| 100 |
+
dataset_id=dataset_id,
|
| 101 |
+
dataset_config=dataset_config,
|
| 102 |
+
dataset_split=dataset_split,
|
| 103 |
+
)
|
| 104 |
|
| 105 |
dataset_ok = False
|
| 106 |
if d_id is None:
|
| 107 |
+
gr.Warning(
|
| 108 |
+
f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.'
|
| 109 |
+
)
|
| 110 |
elif isinstance(config, list):
|
| 111 |
+
gr.Warning(
|
| 112 |
+
f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.'
|
| 113 |
+
)
|
| 114 |
config = gr.update(choices=config, value=config[0])
|
| 115 |
elif isinstance(split, list):
|
| 116 |
+
gr.Warning(
|
| 117 |
+
f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.'
|
| 118 |
+
)
|
| 119 |
split = gr.update(choices=split, value=split[0])
|
| 120 |
else:
|
| 121 |
dataset_ok = True
|
| 122 |
|
| 123 |
if not dataset_ok:
|
| 124 |
return (
|
| 125 |
+
gr.update(interactive=False), # Submit button
|
| 126 |
+
gr.update(visible=True), # Loading row
|
| 127 |
+
gr.update(visible=False), # Preview row
|
| 128 |
+
gr.update(visible=False), # Model prediction input
|
| 129 |
+
gr.update(visible=False), # Model prediction preview
|
| 130 |
+
gr.update(visible=False), # Label mapping preview
|
| 131 |
+
gr.update(visible=False), # feature mapping preview
|
| 132 |
)
|
| 133 |
|
| 134 |
# TODO: Validate column mapping by running once
|
|
|
|
| 140 |
except Exception:
|
| 141 |
column_mapping = {}
|
| 142 |
|
| 143 |
+
(
|
| 144 |
+
column_mapping,
|
| 145 |
+
prediction_input,
|
| 146 |
+
prediction_result,
|
| 147 |
+
id2label_df,
|
| 148 |
+
feature_df,
|
| 149 |
+
) = text_classification_fix_column_mapping(
|
| 150 |
+
column_mapping, ppl, d_id, config, split
|
| 151 |
+
)
|
| 152 |
|
| 153 |
column_mapping = json.dumps(column_mapping, indent=2)
|
| 154 |
|
| 155 |
if prediction_result is None and id2label_df is not None:
|
| 156 |
+
gr.Warning(
|
| 157 |
+
'The model failed to predict with the first row in the dataset. Please provide feature mappings in "Advance" settings.'
|
| 158 |
+
)
|
| 159 |
return (
|
| 160 |
+
gr.update(interactive=False), # Submit button
|
| 161 |
+
gr.update(visible=False), # Loading row
|
| 162 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
| 163 |
+
gr.update(
|
| 164 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
| 165 |
+
), # Model prediction input
|
| 166 |
+
gr.update(visible=False), # Model prediction preview
|
| 167 |
+
gr.update(
|
| 168 |
+
value=id2label_df, visible=True, interactive=True
|
| 169 |
+
), # Label mapping preview
|
| 170 |
+
gr.update(
|
| 171 |
+
value=feature_df, visible=True, interactive=True
|
| 172 |
+
), # feature mapping preview
|
| 173 |
)
|
| 174 |
elif id2label_df is None:
|
| 175 |
+
gr.Warning(
|
| 176 |
+
'The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.'
|
| 177 |
+
)
|
| 178 |
return (
|
| 179 |
+
gr.update(interactive=False), # Submit button
|
| 180 |
+
gr.update(visible=False), # Loading row
|
| 181 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
| 182 |
+
gr.update(
|
| 183 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
| 184 |
+
), # Model prediction input
|
| 185 |
+
gr.update(
|
| 186 |
+
value=prediction_result, visible=True
|
| 187 |
+
), # Model prediction preview
|
| 188 |
+
gr.update(visible=True, interactive=True), # Label mapping preview
|
| 189 |
+
gr.update(visible=True, interactive=True), # feature mapping preview
|
| 190 |
)
|
| 191 |
|
| 192 |
+
gr.Info(
|
| 193 |
+
"Model and dataset validations passed. Your can submit the evaluation task."
|
| 194 |
+
)
|
| 195 |
|
| 196 |
return (
|
| 197 |
+
gr.update(interactive=True), # Submit button
|
| 198 |
+
gr.update(visible=False), # Loading row
|
| 199 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
| 200 |
+
gr.update(
|
| 201 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
| 202 |
+
), # Model prediction input
|
| 203 |
+
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
| 204 |
+
gr.update(
|
| 205 |
+
value=id2label_df, visible=True, interactive=True
|
| 206 |
+
), # Label mapping preview
|
| 207 |
+
gr.update(
|
| 208 |
+
value=feature_df, visible=True, interactive=True
|
| 209 |
+
), # feature mapping preview
|
| 210 |
)
|
| 211 |
|
| 212 |
|
| 213 |
+
def try_submit(
|
| 214 |
+
m_id,
|
| 215 |
+
d_id,
|
| 216 |
+
config,
|
| 217 |
+
split,
|
| 218 |
+
id2label_mapping_dataframe,
|
| 219 |
+
feature_mapping_dataframe,
|
| 220 |
+
local,
|
| 221 |
+
):
|
| 222 |
label_mapping = {}
|
| 223 |
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
| 224 |
label_mapping.update({str(i): label})
|
| 225 |
+
|
| 226 |
feature_mapping = {}
|
| 227 |
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
| 228 |
+
feature_mapping.update(
|
| 229 |
+
{feature_mapping_dataframe["Model Input Features"][i]: feature}
|
| 230 |
+
)
|
| 231 |
|
| 232 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
| 233 |
|
|
|
|
| 235 |
command = [
|
| 236 |
"python",
|
| 237 |
"cli.py",
|
| 238 |
+
"--loader",
|
| 239 |
+
"huggingface",
|
| 240 |
+
"--model",
|
| 241 |
+
m_id,
|
| 242 |
+
"--dataset",
|
| 243 |
+
d_id,
|
| 244 |
+
"--dataset_config",
|
| 245 |
+
config,
|
| 246 |
+
"--dataset_split",
|
| 247 |
+
split,
|
| 248 |
+
"--hf_token",
|
| 249 |
+
os.environ.get(HF_WRITE_TOKEN),
|
| 250 |
+
"--discussion_repo",
|
| 251 |
+
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
| 252 |
+
"--output_format",
|
| 253 |
+
"markdown",
|
| 254 |
+
"--output_portal",
|
| 255 |
+
"huggingface",
|
| 256 |
+
"--feature_mapping",
|
| 257 |
+
json.dumps(feature_mapping),
|
| 258 |
+
"--label_mapping",
|
| 259 |
+
json.dumps(label_mapping),
|
| 260 |
+
"--scan_config",
|
| 261 |
+
"../config.yaml",
|
| 262 |
]
|
| 263 |
|
| 264 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
|
|
|
| 272 |
)
|
| 273 |
result = evaluator.wait()
|
| 274 |
|
| 275 |
+
logging.info(
|
| 276 |
+
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
|
| 277 |
+
)
|
| 278 |
|
| 279 |
+
gr.Info(
|
| 280 |
+
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
|
| 281 |
+
)
|
| 282 |
else:
|
| 283 |
gr.Info("TODO: Submit task to an endpoint")
|
| 284 |
+
|
| 285 |
return gr.update(interactive=True) # Submit button
|
| 286 |
|
| 287 |
|
|
|
|
| 304 |
return gr.Dropdown(splits, value=splits[0], visible=True)
|
| 305 |
except Exception as e:
|
| 306 |
# Dataset may not exist
|
| 307 |
+
gr.Warning(
|
| 308 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
def clear_column_mapping_tables():
|
| 312 |
return [
|
| 313 |
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
| 314 |
gr.update(value=[], visible=False, interactive=True),
|
| 315 |
gr.update(value=[], visible=False, interactive=True),
|
| 316 |
]
|
| 317 |
+
|
| 318 |
+
def gate_validate_btn(
|
| 319 |
+
model_id,
|
| 320 |
+
dataset_id,
|
| 321 |
+
dataset_config,
|
| 322 |
+
dataset_split,
|
| 323 |
+
id2label_mapping_dataframe=None,
|
| 324 |
+
feature_mapping_dataframe=None,
|
| 325 |
+
):
|
| 326 |
+
column_mapping = "{}"
|
| 327 |
_, ppl = check_model(model_id=model_id)
|
| 328 |
|
| 329 |
if id2label_mapping_dataframe is not None:
|
| 330 |
+
labels = convert_column_mapping_to_json(
|
| 331 |
+
id2label_mapping_dataframe.value, label="data"
|
| 332 |
+
)
|
| 333 |
+
features = convert_column_mapping_to_json(
|
| 334 |
+
feature_mapping_dataframe.value, label="text"
|
| 335 |
+
)
|
| 336 |
column_mapping = json.dumps({**labels, **features}, indent=2)
|
| 337 |
|
| 338 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
| 339 |
+
gr.Warning("Label mapping table has invalid contents. Please check again.")
|
| 340 |
+
return (
|
| 341 |
+
gr.update(interactive=False),
|
| 342 |
+
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
| 343 |
+
gr.update(),
|
| 344 |
+
gr.update(),
|
| 345 |
+
gr.update(),
|
| 346 |
+
gr.update(),
|
| 347 |
+
gr.update(),
|
| 348 |
+
)
|
| 349 |
else:
|
| 350 |
if model_id and dataset_id and dataset_config and dataset_split:
|
| 351 |
+
return try_validate(
|
| 352 |
+
model_id,
|
| 353 |
+
ppl,
|
| 354 |
+
dataset_id,
|
| 355 |
+
dataset_config,
|
| 356 |
+
dataset_split,
|
| 357 |
+
column_mapping,
|
| 358 |
+
)
|
| 359 |
else:
|
| 360 |
+
return (
|
| 361 |
+
gr.update(interactive=False),
|
| 362 |
+
gr.update(visible=True),
|
| 363 |
+
gr.update(visible=False),
|
| 364 |
+
gr.update(visible=False),
|
| 365 |
+
gr.update(visible=False),
|
| 366 |
+
gr.update(visible=False),
|
| 367 |
+
gr.update(visible=False),
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
with gr.Row():
|
| 371 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
| 372 |
with gr.Row():
|
| 373 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
| 374 |
+
use_inference = read_inference_type("./config.yaml") == "hf_inference_api"
|
| 375 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
| 376 |
+
|
| 377 |
with gr.Row():
|
| 378 |
+
selected = read_scanners("./config.yaml")
|
| 379 |
+
scan_config = selected + ["data_leakage"]
|
| 380 |
+
scanners = gr.CheckboxGroup(
|
| 381 |
+
choices=scan_config, value=selected, label="Scan Settings", visible=True
|
| 382 |
+
)
|
| 383 |
|
| 384 |
with gr.Row():
|
| 385 |
model_id_input = gr.Textbox(
|
|
|
|
| 392 |
placeholder="tweet_eval",
|
| 393 |
)
|
| 394 |
with gr.Row():
|
| 395 |
+
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
| 396 |
+
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
| 397 |
+
|
| 398 |
with gr.Row(visible=True) as loading_row:
|
| 399 |
+
gr.Markdown(
|
| 400 |
+
"""
|
| 401 |
<p style="text-align: center;">
|
| 402 |
🚀🐢Please validate your model and dataset first...
|
| 403 |
</p>
|
| 404 |
+
"""
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
with gr.Row(visible=False) as preview_row:
|
| 408 |
+
gr.Markdown(
|
| 409 |
+
"""
|
| 410 |
<h1 style="text-align: center;">
|
| 411 |
Confirm Pre-processing Details
|
| 412 |
</h1>
|
| 413 |
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
| 414 |
+
"""
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
with gr.Row():
|
| 418 |
+
id2label_mapping_dataframe = gr.DataFrame(
|
| 419 |
+
label="Preview of label mapping", interactive=True, visible=False
|
| 420 |
+
)
|
| 421 |
+
feature_mapping_dataframe = gr.DataFrame(
|
| 422 |
+
label="Preview of feature mapping", interactive=True, visible=False
|
| 423 |
+
)
|
| 424 |
with gr.Row():
|
| 425 |
+
example_input = gr.Markdown("Sample Input: ", visible=False)
|
| 426 |
+
|
| 427 |
with gr.Row():
|
| 428 |
+
example_labels = gr.Label(label="Model Prediction Sample", visible=False)
|
| 429 |
+
|
| 430 |
run_btn = gr.Button(
|
| 431 |
"Get Evaluation Result",
|
| 432 |
variant="primary",
|
| 433 |
interactive=False,
|
| 434 |
size="lg",
|
| 435 |
)
|
|
|
|
|
|
|
| 436 |
|
| 437 |
+
model_id_input.blur(
|
| 438 |
+
clear_column_mapping_tables,
|
| 439 |
+
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
|
| 440 |
+
)
|
| 441 |
|
| 442 |
+
dataset_id_input.blur(
|
| 443 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
| 444 |
+
)
|
| 445 |
+
dataset_id_input.submit(
|
| 446 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
| 447 |
+
)
|
| 448 |
|
| 449 |
dataset_config_input.change(
|
| 450 |
+
check_dataset_and_get_split,
|
| 451 |
+
inputs=[dataset_config_input, dataset_id_input],
|
| 452 |
+
outputs=[dataset_split_input],
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
dataset_id_input.blur(
|
| 456 |
+
clear_column_mapping_tables,
|
| 457 |
+
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
|
| 458 |
+
)
|
| 459 |
+
# model_id_input.blur(gate_validate_btn,
|
| 460 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
| 461 |
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
| 462 |
+
# dataset_id_input.blur(gate_validate_btn,
|
| 463 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
| 464 |
+
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
| 465 |
+
dataset_config_input.change(
|
| 466 |
+
gate_validate_btn,
|
| 467 |
+
inputs=[
|
| 468 |
+
model_id_input,
|
| 469 |
+
dataset_id_input,
|
| 470 |
+
dataset_config_input,
|
| 471 |
+
dataset_split_input,
|
| 472 |
+
],
|
| 473 |
+
outputs=[
|
| 474 |
+
run_btn,
|
| 475 |
+
loading_row,
|
| 476 |
+
preview_row,
|
| 477 |
+
example_input,
|
| 478 |
+
example_labels,
|
| 479 |
+
id2label_mapping_dataframe,
|
| 480 |
+
feature_mapping_dataframe,
|
| 481 |
+
],
|
| 482 |
)
|
| 483 |
+
dataset_split_input.change(
|
| 484 |
+
gate_validate_btn,
|
| 485 |
+
inputs=[
|
| 486 |
+
model_id_input,
|
| 487 |
+
dataset_id_input,
|
| 488 |
+
dataset_config_input,
|
| 489 |
+
dataset_split_input,
|
| 490 |
+
],
|
| 491 |
+
outputs=[
|
| 492 |
+
run_btn,
|
| 493 |
+
loading_row,
|
| 494 |
+
preview_row,
|
| 495 |
+
example_input,
|
| 496 |
+
example_labels,
|
| 497 |
+
id2label_mapping_dataframe,
|
| 498 |
+
feature_mapping_dataframe,
|
| 499 |
+
],
|
| 500 |
+
)
|
| 501 |
+
id2label_mapping_dataframe.input(
|
| 502 |
+
gate_validate_btn,
|
| 503 |
+
inputs=[
|
| 504 |
+
model_id_input,
|
| 505 |
+
dataset_id_input,
|
| 506 |
+
dataset_config_input,
|
| 507 |
+
dataset_split_input,
|
| 508 |
+
id2label_mapping_dataframe,
|
| 509 |
+
feature_mapping_dataframe,
|
| 510 |
+
],
|
| 511 |
+
outputs=[
|
| 512 |
+
run_btn,
|
| 513 |
+
loading_row,
|
| 514 |
+
preview_row,
|
| 515 |
+
example_input,
|
| 516 |
+
example_labels,
|
| 517 |
+
id2label_mapping_dataframe,
|
| 518 |
+
feature_mapping_dataframe,
|
| 519 |
+
],
|
| 520 |
+
)
|
| 521 |
+
feature_mapping_dataframe.input(
|
| 522 |
+
gate_validate_btn,
|
| 523 |
+
inputs=[
|
| 524 |
+
model_id_input,
|
| 525 |
+
dataset_id_input,
|
| 526 |
+
dataset_config_input,
|
| 527 |
+
dataset_split_input,
|
| 528 |
+
id2label_mapping_dataframe,
|
| 529 |
+
feature_mapping_dataframe,
|
| 530 |
+
],
|
| 531 |
+
outputs=[
|
| 532 |
+
run_btn,
|
| 533 |
+
loading_row,
|
| 534 |
+
preview_row,
|
| 535 |
+
example_input,
|
| 536 |
+
example_labels,
|
| 537 |
+
id2label_mapping_dataframe,
|
| 538 |
+
feature_mapping_dataframe,
|
| 539 |
+
],
|
| 540 |
+
)
|
| 541 |
+
scanners.change(write_scanners, inputs=scanners)
|
| 542 |
+
run_inference.change(write_inference_type, inputs=[run_inference])
|
| 543 |
|
| 544 |
run_btn.click(
|
| 545 |
try_submit,
|
|
|
|
| 555 |
outputs=[
|
| 556 |
run_btn,
|
| 557 |
],
|
| 558 |
+
)
|
app_text_classification.py
CHANGED
|
@@ -1,15 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import uuid
|
| 3 |
-
from io_utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
|
| 5 |
-
from text_classification_ui_helpers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
MAX_LABELS = 20
|
| 8 |
MAX_FEATURES = 20
|
| 9 |
|
| 10 |
-
EXAMPLE_MODEL_ID =
|
| 11 |
-
EXAMPLE_DATA_ID =
|
| 12 |
-
CONFIG_PATH=
|
|
|
|
| 13 |
|
| 14 |
def get_demo(demo):
|
| 15 |
with gr.Row():
|
|
@@ -24,18 +37,20 @@ def get_demo(demo):
|
|
| 24 |
label="Hugging Face Dataset id",
|
| 25 |
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
|
| 26 |
)
|
| 27 |
-
|
| 28 |
with gr.Row():
|
| 29 |
-
dataset_config_input = gr.Dropdown(label=
|
| 30 |
-
dataset_split_input = gr.Dropdown(label=
|
| 31 |
-
|
| 32 |
with gr.Row():
|
| 33 |
-
example_input = gr.Markdown(
|
| 34 |
with gr.Row():
|
| 35 |
-
example_prediction = gr.Label(label=
|
| 36 |
-
|
| 37 |
with gr.Row():
|
| 38 |
-
with gr.Accordion(
|
|
|
|
|
|
|
| 39 |
with gr.Row():
|
| 40 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
| 41 |
column_mappings = []
|
|
@@ -43,22 +58,24 @@ def get_demo(demo):
|
|
| 43 |
with gr.Column():
|
| 44 |
for _ in range(MAX_LABELS):
|
| 45 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 46 |
-
with gr.Column():
|
| 47 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
| 48 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 49 |
-
|
| 50 |
-
with gr.Accordion(label=
|
| 51 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
| 52 |
-
use_inference = read_inference_type(
|
| 53 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
| 54 |
-
|
| 55 |
-
with gr.Accordion(label=
|
| 56 |
-
selected = read_scanners(
|
| 57 |
# currently we remove data_leakage from the default scanners
|
| 58 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
| 59 |
# when using inference API, causing rate limit error
|
| 60 |
-
scan_config = selected + [
|
| 61 |
-
scanners = gr.CheckboxGroup(
|
|
|
|
|
|
|
| 62 |
|
| 63 |
with gr.Row():
|
| 64 |
run_btn = gr.Button(
|
|
@@ -67,69 +84,97 @@ def get_demo(demo):
|
|
| 67 |
interactive=True,
|
| 68 |
size="lg",
|
| 69 |
)
|
| 70 |
-
|
| 71 |
with gr.Row():
|
| 72 |
uid = uuid.uuid4()
|
| 73 |
-
uid_label = gr.Textbox(
|
|
|
|
|
|
|
| 74 |
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
|
| 75 |
demo.load(get_logs_file, uid_label, logs, every=0.5)
|
| 76 |
-
|
| 77 |
-
gr.on(
|
|
|
|
| 78 |
fn=write_column_mapping_to_config,
|
| 79 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
gr.on(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
fn=check_model_and_show_prediction,
|
| 83 |
-
inputs=[
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
dataset_id_input.blur(
|
|
|
|
|
|
|
| 87 |
|
| 88 |
dataset_config_input.change(
|
| 89 |
-
check_dataset_and_get_split,
|
| 90 |
-
inputs=[dataset_id_input, dataset_config_input],
|
| 91 |
-
outputs=[dataset_split_input]
|
| 92 |
-
|
| 93 |
-
scanners.change(
|
| 94 |
-
write_scanners,
|
| 95 |
-
inputs=scanners
|
| 96 |
)
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
)
|
| 102 |
|
| 103 |
gr.on(
|
| 104 |
triggers=[
|
| 105 |
run_btn.click,
|
| 106 |
-
|
| 107 |
fn=try_submit,
|
| 108 |
inputs=[
|
| 109 |
-
model_id_input,
|
| 110 |
-
dataset_id_input,
|
| 111 |
-
dataset_config_input,
|
| 112 |
-
dataset_split_input,
|
| 113 |
run_local,
|
| 114 |
-
uid_label
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
| 117 |
def enable_run_btn():
|
| 118 |
-
return
|
|
|
|
| 119 |
gr.on(
|
| 120 |
triggers=[
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
| 127 |
fn=enable_run_btn,
|
| 128 |
inputs=None,
|
| 129 |
-
outputs=[run_btn]
|
| 130 |
-
|
|
|
|
| 131 |
gr.on(
|
| 132 |
triggers=[label.change for label in column_mappings],
|
| 133 |
fn=enable_run_btn,
|
| 134 |
inputs=None,
|
| 135 |
-
outputs=[run_btn]
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import uuid
|
| 3 |
+
from io_utils import (
|
| 4 |
+
read_scanners,
|
| 5 |
+
write_scanners,
|
| 6 |
+
read_inference_type,
|
| 7 |
+
write_inference_type,
|
| 8 |
+
get_logs_file,
|
| 9 |
+
)
|
| 10 |
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
|
| 11 |
+
from text_classification_ui_helpers import (
|
| 12 |
+
try_submit,
|
| 13 |
+
check_dataset_and_get_config,
|
| 14 |
+
check_dataset_and_get_split,
|
| 15 |
+
check_model_and_show_prediction,
|
| 16 |
+
write_column_mapping_to_config,
|
| 17 |
+
)
|
| 18 |
|
| 19 |
MAX_LABELS = 20
|
| 20 |
MAX_FEATURES = 20
|
| 21 |
|
| 22 |
+
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 23 |
+
EXAMPLE_DATA_ID = "tweet_eval"
|
| 24 |
+
CONFIG_PATH = "./config.yaml"
|
| 25 |
+
|
| 26 |
|
| 27 |
def get_demo(demo):
|
| 28 |
with gr.Row():
|
|
|
|
| 37 |
label="Hugging Face Dataset id",
|
| 38 |
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
|
| 39 |
)
|
| 40 |
+
|
| 41 |
with gr.Row():
|
| 42 |
+
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
| 43 |
+
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
| 44 |
+
|
| 45 |
with gr.Row():
|
| 46 |
+
example_input = gr.Markdown("Example Input", visible=False)
|
| 47 |
with gr.Row():
|
| 48 |
+
example_prediction = gr.Label(label="Model Prediction Sample", visible=False)
|
| 49 |
+
|
| 50 |
with gr.Row():
|
| 51 |
+
with gr.Accordion(
|
| 52 |
+
label="Label and Feature Mapping", visible=False, open=False
|
| 53 |
+
) as column_mapping_accordion:
|
| 54 |
with gr.Row():
|
| 55 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
| 56 |
column_mappings = []
|
|
|
|
| 58 |
with gr.Column():
|
| 59 |
for _ in range(MAX_LABELS):
|
| 60 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 61 |
+
with gr.Column():
|
| 62 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
| 63 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 64 |
+
|
| 65 |
+
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
|
| 66 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
| 67 |
+
use_inference = read_inference_type(CONFIG_PATH) == "hf_inference_api"
|
| 68 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
| 69 |
+
|
| 70 |
+
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
| 71 |
+
selected = read_scanners(CONFIG_PATH)
|
| 72 |
# currently we remove data_leakage from the default scanners
|
| 73 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
| 74 |
# when using inference API, causing rate limit error
|
| 75 |
+
scan_config = selected + ["data_leakage"]
|
| 76 |
+
scanners = gr.CheckboxGroup(
|
| 77 |
+
choices=scan_config, value=selected, label="Scan Settings", visible=True
|
| 78 |
+
)
|
| 79 |
|
| 80 |
with gr.Row():
|
| 81 |
run_btn = gr.Button(
|
|
|
|
| 84 |
interactive=True,
|
| 85 |
size="lg",
|
| 86 |
)
|
| 87 |
+
|
| 88 |
with gr.Row():
|
| 89 |
uid = uuid.uuid4()
|
| 90 |
+
uid_label = gr.Textbox(
|
| 91 |
+
label="Evaluation ID:", value=uid, visible=False, interactive=False
|
| 92 |
+
)
|
| 93 |
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
|
| 94 |
demo.load(get_logs_file, uid_label, logs, every=0.5)
|
| 95 |
+
|
| 96 |
+
gr.on(
|
| 97 |
+
triggers=[label.change for label in column_mappings],
|
| 98 |
fn=write_column_mapping_to_config,
|
| 99 |
+
inputs=[
|
| 100 |
+
dataset_id_input,
|
| 101 |
+
dataset_config_input,
|
| 102 |
+
dataset_split_input,
|
| 103 |
+
*column_mappings,
|
| 104 |
+
],
|
| 105 |
+
)
|
| 106 |
|
| 107 |
+
gr.on(
|
| 108 |
+
triggers=[
|
| 109 |
+
model_id_input.change,
|
| 110 |
+
dataset_config_input.change,
|
| 111 |
+
dataset_split_input.change,
|
| 112 |
+
],
|
| 113 |
fn=check_model_and_show_prediction,
|
| 114 |
+
inputs=[
|
| 115 |
+
model_id_input,
|
| 116 |
+
dataset_id_input,
|
| 117 |
+
dataset_config_input,
|
| 118 |
+
dataset_split_input,
|
| 119 |
+
],
|
| 120 |
+
outputs=[
|
| 121 |
+
example_input,
|
| 122 |
+
example_prediction,
|
| 123 |
+
column_mapping_accordion,
|
| 124 |
+
*column_mappings,
|
| 125 |
+
],
|
| 126 |
+
)
|
| 127 |
|
| 128 |
+
dataset_id_input.blur(
|
| 129 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
| 130 |
+
)
|
| 131 |
|
| 132 |
dataset_config_input.change(
|
| 133 |
+
check_dataset_and_get_split,
|
| 134 |
+
inputs=[dataset_id_input, dataset_config_input],
|
| 135 |
+
outputs=[dataset_split_input],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
)
|
| 137 |
|
| 138 |
+
scanners.change(write_scanners, inputs=scanners)
|
| 139 |
+
|
| 140 |
+
run_inference.change(write_inference_type, inputs=[run_inference])
|
|
|
|
| 141 |
|
| 142 |
gr.on(
|
| 143 |
triggers=[
|
| 144 |
run_btn.click,
|
| 145 |
+
],
|
| 146 |
fn=try_submit,
|
| 147 |
inputs=[
|
| 148 |
+
model_id_input,
|
| 149 |
+
dataset_id_input,
|
| 150 |
+
dataset_config_input,
|
| 151 |
+
dataset_split_input,
|
| 152 |
run_local,
|
| 153 |
+
uid_label,
|
| 154 |
+
],
|
| 155 |
+
outputs=[run_btn, logs],
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
def enable_run_btn():
|
| 159 |
+
return gr.update(interactive=True)
|
| 160 |
+
|
| 161 |
gr.on(
|
| 162 |
triggers=[
|
| 163 |
+
model_id_input.change,
|
| 164 |
+
dataset_config_input.change,
|
| 165 |
+
dataset_split_input.change,
|
| 166 |
+
run_inference.change,
|
| 167 |
+
run_local.change,
|
| 168 |
+
scanners.change,
|
| 169 |
+
],
|
| 170 |
fn=enable_run_btn,
|
| 171 |
inputs=None,
|
| 172 |
+
outputs=[run_btn],
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
gr.on(
|
| 176 |
triggers=[label.change for label in column_mappings],
|
| 177 |
fn=enable_run_btn,
|
| 178 |
inputs=None,
|
| 179 |
+
outputs=[run_btn],
|
| 180 |
+
)
|
fetch_utils.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
-
import datasets
|
| 2 |
import logging
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
def check_dataset_and_get_config(dataset_id):
|
| 5 |
try:
|
| 6 |
configs = datasets.get_dataset_config_names(dataset_id)
|
|
@@ -9,17 +11,22 @@ def check_dataset_and_get_config(dataset_id):
|
|
| 9 |
# Dataset may not exist
|
| 10 |
return None
|
| 11 |
|
|
|
|
| 12 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
| 13 |
try:
|
| 14 |
ds = datasets.load_dataset(dataset_id, dataset_config)
|
| 15 |
except Exception as e:
|
| 16 |
# Dataset may not exist
|
| 17 |
-
logging.warning(
|
|
|
|
|
|
|
| 18 |
return None
|
| 19 |
try:
|
| 20 |
splits = list(ds.keys())
|
| 21 |
return splits
|
| 22 |
except Exception as e:
|
| 23 |
# Dataset has no splits
|
| 24 |
-
logging.warning(
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
|
| 3 |
+
import datasets
|
| 4 |
+
|
| 5 |
+
|
| 6 |
def check_dataset_and_get_config(dataset_id):
|
| 7 |
try:
|
| 8 |
configs = datasets.get_dataset_config_names(dataset_id)
|
|
|
|
| 11 |
# Dataset may not exist
|
| 12 |
return None
|
| 13 |
|
| 14 |
+
|
| 15 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
| 16 |
try:
|
| 17 |
ds = datasets.load_dataset(dataset_id, dataset_config)
|
| 18 |
except Exception as e:
|
| 19 |
# Dataset may not exist
|
| 20 |
+
logging.warning(
|
| 21 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
| 22 |
+
)
|
| 23 |
return None
|
| 24 |
try:
|
| 25 |
splits = list(ds.keys())
|
| 26 |
return splits
|
| 27 |
except Exception as e:
|
| 28 |
# Dataset has no splits
|
| 29 |
+
logging.warning(
|
| 30 |
+
f"Dataset {dataset_id} with config {dataset_config} has no splits: {e}"
|
| 31 |
+
)
|
| 32 |
+
return None
|
io_utils.py
CHANGED
|
@@ -1,14 +1,17 @@
|
|
| 1 |
-
import yaml
|
| 2 |
-
import subprocess
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
YAML_PATH = "./config.yaml"
|
| 6 |
PIPE_PATH = "./tmp/pipe"
|
| 7 |
|
|
|
|
| 8 |
class Dumper(yaml.Dumper):
|
| 9 |
def increase_indent(self, flow=False, *args, **kwargs):
|
| 10 |
return super().increase_indent(flow=flow, indentless=False)
|
| 11 |
-
|
|
|
|
| 12 |
# read scanners from yaml file
|
| 13 |
# return a list of scanners
|
| 14 |
def read_scanners(path):
|
|
@@ -18,6 +21,7 @@ def read_scanners(path):
|
|
| 18 |
scanners = config.get("detectors", [])
|
| 19 |
return scanners
|
| 20 |
|
|
|
|
| 21 |
# convert a list of scanners to yaml file
|
| 22 |
def write_scanners(scanners):
|
| 23 |
print(scanners)
|
|
@@ -28,6 +32,7 @@ def write_scanners(scanners):
|
|
| 28 |
# save scanners to detectors in yaml
|
| 29 |
yaml.dump(config, f, Dumper=Dumper)
|
| 30 |
|
|
|
|
| 31 |
# read model_type from yaml file
|
| 32 |
def read_inference_type(path):
|
| 33 |
inference_type = ""
|
|
@@ -36,17 +41,19 @@ def read_inference_type(path):
|
|
| 36 |
inference_type = config.get("inference_type", "")
|
| 37 |
return inference_type
|
| 38 |
|
|
|
|
| 39 |
# write model_type to yaml file
|
| 40 |
def write_inference_type(use_inference):
|
| 41 |
with open(YAML_PATH, "r+") as f:
|
| 42 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 43 |
if use_inference:
|
| 44 |
-
config["inference_type"] =
|
| 45 |
else:
|
| 46 |
-
config["inference_type"] =
|
| 47 |
# save inference_type to inference_type in yaml
|
| 48 |
yaml.dump(config, f, Dumper=Dumper)
|
| 49 |
|
|
|
|
| 50 |
# read column mapping from yaml file
|
| 51 |
def read_column_mapping(path):
|
| 52 |
column_mapping = {}
|
|
@@ -56,6 +63,7 @@ def read_column_mapping(path):
|
|
| 56 |
column_mapping = config.get("column_mapping", dict())
|
| 57 |
return column_mapping
|
| 58 |
|
|
|
|
| 59 |
# write column mapping to yaml file
|
| 60 |
def write_column_mapping(mapping):
|
| 61 |
with open(YAML_PATH, "r") as f:
|
|
@@ -70,6 +78,7 @@ def write_column_mapping(mapping):
|
|
| 70 |
# save column_mapping to column_mapping in yaml
|
| 71 |
yaml.dump(config, f, Dumper=Dumper)
|
| 72 |
|
|
|
|
| 73 |
# convert column mapping dataframe to json
|
| 74 |
def convert_column_mapping_to_json(df, label=""):
|
| 75 |
column_mapping = {}
|
|
@@ -78,6 +87,7 @@ def convert_column_mapping_to_json(df, label=""):
|
|
| 78 |
column_mapping[label].append(row.tolist())
|
| 79 |
return column_mapping
|
| 80 |
|
|
|
|
| 81 |
def get_logs_file(uid):
|
| 82 |
try:
|
| 83 |
file = open(f"./tmp/{uid}_log", "r")
|
|
@@ -85,20 +95,23 @@ def get_logs_file(uid):
|
|
| 85 |
except Exception:
|
| 86 |
return "Log file does not exist"
|
| 87 |
|
|
|
|
| 88 |
def write_log_to_user_file(id, log):
|
| 89 |
with open(f"./tmp/{id}_log", "a") as f:
|
| 90 |
f.write(log)
|
| 91 |
|
|
|
|
| 92 |
def save_job_to_pipe(id, job, lock):
|
| 93 |
-
if not os.path.exists(
|
| 94 |
-
os.makedirs(
|
| 95 |
job = [str(i) for i in job]
|
| 96 |
job = ",".join(job)
|
| 97 |
print(job)
|
| 98 |
with lock:
|
| 99 |
with open(PIPE_PATH, "a") as f:
|
| 100 |
# write each element in job
|
| 101 |
-
f.write(f
|
|
|
|
| 102 |
|
| 103 |
def pop_job_from_pipe():
|
| 104 |
if not os.path.exists(PIPE_PATH):
|
|
@@ -113,7 +126,7 @@ def pop_job_from_pipe():
|
|
| 113 |
f.close()
|
| 114 |
if len(job) == 0:
|
| 115 |
return
|
| 116 |
-
job_info = job.split(
|
| 117 |
if len(job_info) != 2:
|
| 118 |
raise ValueError("Invalid job info: ", job_info)
|
| 119 |
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import subprocess
|
| 3 |
+
|
| 4 |
+
import yaml
|
| 5 |
|
| 6 |
YAML_PATH = "./config.yaml"
|
| 7 |
PIPE_PATH = "./tmp/pipe"
|
| 8 |
|
| 9 |
+
|
| 10 |
class Dumper(yaml.Dumper):
|
| 11 |
def increase_indent(self, flow=False, *args, **kwargs):
|
| 12 |
return super().increase_indent(flow=flow, indentless=False)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
# read scanners from yaml file
|
| 16 |
# return a list of scanners
|
| 17 |
def read_scanners(path):
|
|
|
|
| 21 |
scanners = config.get("detectors", [])
|
| 22 |
return scanners
|
| 23 |
|
| 24 |
+
|
| 25 |
# convert a list of scanners to yaml file
|
| 26 |
def write_scanners(scanners):
|
| 27 |
print(scanners)
|
|
|
|
| 32 |
# save scanners to detectors in yaml
|
| 33 |
yaml.dump(config, f, Dumper=Dumper)
|
| 34 |
|
| 35 |
+
|
| 36 |
# read model_type from yaml file
|
| 37 |
def read_inference_type(path):
|
| 38 |
inference_type = ""
|
|
|
|
| 41 |
inference_type = config.get("inference_type", "")
|
| 42 |
return inference_type
|
| 43 |
|
| 44 |
+
|
| 45 |
# write model_type to yaml file
|
| 46 |
def write_inference_type(use_inference):
|
| 47 |
with open(YAML_PATH, "r+") as f:
|
| 48 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 49 |
if use_inference:
|
| 50 |
+
config["inference_type"] = "hf_inference_api"
|
| 51 |
else:
|
| 52 |
+
config["inference_type"] = "hf_pipeline"
|
| 53 |
# save inference_type to inference_type in yaml
|
| 54 |
yaml.dump(config, f, Dumper=Dumper)
|
| 55 |
|
| 56 |
+
|
| 57 |
# read column mapping from yaml file
|
| 58 |
def read_column_mapping(path):
|
| 59 |
column_mapping = {}
|
|
|
|
| 63 |
column_mapping = config.get("column_mapping", dict())
|
| 64 |
return column_mapping
|
| 65 |
|
| 66 |
+
|
| 67 |
# write column mapping to yaml file
|
| 68 |
def write_column_mapping(mapping):
|
| 69 |
with open(YAML_PATH, "r") as f:
|
|
|
|
| 78 |
# save column_mapping to column_mapping in yaml
|
| 79 |
yaml.dump(config, f, Dumper=Dumper)
|
| 80 |
|
| 81 |
+
|
| 82 |
# convert column mapping dataframe to json
|
| 83 |
def convert_column_mapping_to_json(df, label=""):
|
| 84 |
column_mapping = {}
|
|
|
|
| 87 |
column_mapping[label].append(row.tolist())
|
| 88 |
return column_mapping
|
| 89 |
|
| 90 |
+
|
| 91 |
def get_logs_file(uid):
|
| 92 |
try:
|
| 93 |
file = open(f"./tmp/{uid}_log", "r")
|
|
|
|
| 95 |
except Exception:
|
| 96 |
return "Log file does not exist"
|
| 97 |
|
| 98 |
+
|
| 99 |
def write_log_to_user_file(id, log):
|
| 100 |
with open(f"./tmp/{id}_log", "a") as f:
|
| 101 |
f.write(log)
|
| 102 |
|
| 103 |
+
|
| 104 |
def save_job_to_pipe(id, job, lock):
|
| 105 |
+
if not os.path.exists("./tmp"):
|
| 106 |
+
os.makedirs("./tmp")
|
| 107 |
job = [str(i) for i in job]
|
| 108 |
job = ",".join(job)
|
| 109 |
print(job)
|
| 110 |
with lock:
|
| 111 |
with open(PIPE_PATH, "a") as f:
|
| 112 |
# write each element in job
|
| 113 |
+
f.write(f"{id}@{job}\n")
|
| 114 |
+
|
| 115 |
|
| 116 |
def pop_job_from_pipe():
|
| 117 |
if not os.path.exists(PIPE_PATH):
|
|
|
|
| 126 |
f.close()
|
| 127 |
if len(job) == 0:
|
| 128 |
return
|
| 129 |
+
job_info = job.split("\n")[0].split("@")
|
| 130 |
if len(job_info) != 2:
|
| 131 |
raise ValueError("Invalid job info: ", job_info)
|
| 132 |
|
mlflow_test.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from mlflow.utils.environment import _PythonEnv
|
| 3 |
+
from mlflow.utils.virtualenv import (
|
| 4 |
+
_PYENV_ROOT_DIR,
|
| 5 |
+
_VIRTUALENV_ENVS_DIR,
|
| 6 |
+
_create_virtualenv,
|
| 7 |
+
_get_mlflow_virtualenv_root,
|
| 8 |
+
_get_virtualenv_extra_env_vars,
|
| 9 |
+
_get_virtualenv_name,
|
| 10 |
+
_install_python,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
_create_virtualenv(
|
| 15 |
+
"/Users/inoki/giskard-home/projects/credit/models/2a2b6a9c-4050-4bb6-9024-00bf15651262",
|
| 16 |
+
Path("/opt/homebrew/bin/python3.10"),
|
| 17 |
+
Path("/Users/inoki/giskard-home/mlflow-venv1"),
|
| 18 |
+
_PythonEnv()
|
| 19 |
+
)
|
| 20 |
+
|
run_jobs.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
-
from io_utils import pop_job_from_pipe
|
| 2 |
-
import time
|
| 3 |
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def start_process_run_job():
|
| 6 |
try:
|
| 7 |
print("Running jobs in thread")
|
| 8 |
-
global thread
|
| 9 |
thread = threading.Thread(target=run_job)
|
| 10 |
thread.daemon = True
|
| 11 |
thread.do_run = True
|
|
@@ -13,11 +15,14 @@ def start_process_run_job():
|
|
| 13 |
|
| 14 |
except Exception as e:
|
| 15 |
print("Failed to start thread: ", e)
|
|
|
|
|
|
|
| 16 |
def stop_thread():
|
| 17 |
print("Stop thread")
|
| 18 |
thread.do_run = False
|
| 19 |
|
| 20 |
-
|
|
|
|
| 21 |
while True:
|
| 22 |
print(thread.do_run)
|
| 23 |
try:
|
|
@@ -26,4 +31,4 @@ def run_job():
|
|
| 26 |
except KeyboardInterrupt:
|
| 27 |
print("KeyboardInterrupt stop background thread")
|
| 28 |
stop_thread()
|
| 29 |
-
break
|
|
|
|
|
|
|
|
|
|
| 1 |
import threading
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
+
from io_utils import pop_job_from_pipe
|
| 5 |
+
|
| 6 |
|
| 7 |
def start_process_run_job():
|
| 8 |
try:
|
| 9 |
print("Running jobs in thread")
|
| 10 |
+
global thread
|
| 11 |
thread = threading.Thread(target=run_job)
|
| 12 |
thread.daemon = True
|
| 13 |
thread.do_run = True
|
|
|
|
| 15 |
|
| 16 |
except Exception as e:
|
| 17 |
print("Failed to start thread: ", e)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
def stop_thread():
|
| 21 |
print("Stop thread")
|
| 22 |
thread.do_run = False
|
| 23 |
|
| 24 |
+
|
| 25 |
+
def run_job():
|
| 26 |
while True:
|
| 27 |
print(thread.do_run)
|
| 28 |
try:
|
|
|
|
| 31 |
except KeyboardInterrupt:
|
| 32 |
print("KeyboardInterrupt stop background thread")
|
| 33 |
stop_thread()
|
| 34 |
+
break
|
text_classification.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
-
import datasets
|
| 2 |
-
import logging
|
| 3 |
import json
|
| 4 |
-
import
|
|
|
|
|
|
|
| 5 |
import huggingface_hub
|
|
|
|
| 6 |
from transformers import pipeline
|
| 7 |
|
|
|
|
| 8 |
def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
| 9 |
try:
|
| 10 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
|
@@ -13,9 +15,12 @@ def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
|
| 13 |
features = [f for f in dataset_features.keys() if f != "label"]
|
| 14 |
return labels, features
|
| 15 |
except Exception as e:
|
| 16 |
-
logging.warning(
|
|
|
|
|
|
|
| 17 |
return None, None
|
| 18 |
|
|
|
|
| 19 |
def check_model(model_id):
|
| 20 |
try:
|
| 21 |
task = huggingface_hub.model_info(model_id).pipeline_tag
|
|
@@ -28,7 +33,7 @@ def check_model(model_id):
|
|
| 28 |
return ppl
|
| 29 |
except Exception:
|
| 30 |
return None
|
| 31 |
-
|
| 32 |
|
| 33 |
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
| 34 |
for model_label in id2label_mapping.keys():
|
|
@@ -45,7 +50,7 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
| 45 |
continue
|
| 46 |
if len(feature.names) != len(id2label_mapping.keys()):
|
| 47 |
continue
|
| 48 |
-
|
| 49 |
dataset_labels = feature.names
|
| 50 |
# Try to match labels
|
| 51 |
for label in feature.names:
|
|
@@ -53,7 +58,9 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
| 53 |
model_label = label
|
| 54 |
else:
|
| 55 |
# Try to find case unsensative
|
| 56 |
-
model_label, label = text_classificaiton_match_label_case_unsensative(
|
|
|
|
|
|
|
| 57 |
if model_label is not None:
|
| 58 |
id2label_mapping[model_label] = label
|
| 59 |
else:
|
|
@@ -61,7 +68,8 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
| 61 |
|
| 62 |
return id2label_mapping, dataset_labels
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
params:
|
| 66 |
column_mapping: dict
|
| 67 |
example: {
|
|
@@ -72,7 +80,9 @@ params:
|
|
| 72 |
}
|
| 73 |
}
|
| 74 |
ppl: pipeline
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
| 77 |
# get the element in all the list elements
|
| 78 |
column_mapping = json.loads(column_mapping)
|
|
@@ -83,10 +93,11 @@ def check_column_mapping_keys_validity(column_mapping, ppl):
|
|
| 83 |
|
| 84 |
id2label = ppl.model.config.id2label
|
| 85 |
original_labels = set(id2label.values())
|
| 86 |
-
|
| 87 |
return user_labels == model_labels == original_labels
|
| 88 |
|
| 89 |
-
|
|
|
|
| 90 |
params:
|
| 91 |
column_mapping: dict
|
| 92 |
dataset_features: dict
|
|
@@ -94,7 +105,9 @@ params:
|
|
| 94 |
'text': Value(dtype='string', id=None),
|
| 95 |
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
|
| 96 |
}
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
def infer_text_input_column(column_mapping, dataset_features):
|
| 99 |
# Check whether we need to infer the text input column
|
| 100 |
infer_text_input_column = True
|
|
@@ -109,18 +122,20 @@ def infer_text_input_column(column_mapping, dataset_features):
|
|
| 109 |
|
| 110 |
if infer_text_input_column:
|
| 111 |
# Try to retrieve one
|
| 112 |
-
candidates = [
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
if len(candidates) > 0:
|
| 118 |
logging.debug(f"Candidates are {candidates}")
|
| 119 |
column_mapping["text"] = candidates[0]
|
| 120 |
-
|
| 121 |
return column_mapping, feature_map_df
|
| 122 |
|
| 123 |
-
|
|
|
|
| 124 |
params:
|
| 125 |
column_mapping: dict
|
| 126 |
id2label_mapping: dict
|
|
@@ -130,8 +145,12 @@ params:
|
|
| 130 |
'neutral': 'neutral',
|
| 131 |
'positive': 'positive'
|
| 132 |
}
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
# Check whether we need to infer the output label column
|
| 136 |
if "data" in column_mapping.keys():
|
| 137 |
if isinstance(column_mapping["data"], list):
|
|
@@ -139,25 +158,29 @@ def infer_output_label_column(column_mapping, id2label_mapping, id2label, datase
|
|
| 139 |
for user_label, model_label in column_mapping["data"]:
|
| 140 |
id2label_mapping[model_label] = user_label
|
| 141 |
elif None in id2label_mapping.values():
|
| 142 |
-
column_mapping["label"] = {
|
| 143 |
-
i: None for i in id2label.keys()
|
| 144 |
-
}
|
| 145 |
return column_mapping, None
|
| 146 |
-
|
| 147 |
if "data" not in column_mapping.keys():
|
| 148 |
# Column mapping should contain original model labels
|
| 149 |
column_mapping["label"] = {
|
| 150 |
-
str(i): id2label_mapping[label]
|
|
|
|
| 151 |
}
|
| 152 |
# print('>>>>> column_mapping >>>>>', column_mapping)
|
| 153 |
|
| 154 |
-
id2label_df = pd.DataFrame(
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
return column_mapping, id2label_df
|
| 160 |
|
|
|
|
| 161 |
def check_dataset_features_validity(d_id, config, split):
|
| 162 |
# We assume dataset is ok here
|
| 163 |
ds = datasets.load_dataset(d_id, config)[split]
|
|
@@ -171,6 +194,7 @@ def check_dataset_features_validity(d_id, config, split):
|
|
| 171 |
|
| 172 |
return df, dataset_features
|
| 173 |
|
|
|
|
| 174 |
def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
| 175 |
# get a sample prediction from the model on the dataset
|
| 176 |
prediction_input = None
|
|
@@ -184,7 +208,7 @@ def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
|
| 184 |
else:
|
| 185 |
prediction_input = ds[0]["text"]
|
| 186 |
|
| 187 |
-
print(
|
| 188 |
results = ppl(prediction_input, top_k=None)
|
| 189 |
# Display results in original label and mapped label
|
| 190 |
prediction_result = {
|
|
@@ -193,7 +217,6 @@ def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
|
| 193 |
except Exception:
|
| 194 |
# Pipeline prediction failed, need to provide labels
|
| 195 |
return prediction_input, None
|
| 196 |
-
|
| 197 |
|
| 198 |
return prediction_input, prediction_result
|
| 199 |
|
|
@@ -212,37 +235,55 @@ def get_sample_prediction(ppl, df, column_mapping, id2label_mapping):
|
|
| 212 |
except Exception:
|
| 213 |
# Pipeline prediction failed, need to provide labels
|
| 214 |
return prediction_input, None
|
| 215 |
-
|
| 216 |
# Display results in original label and mapped label
|
| 217 |
prediction_result = {
|
| 218 |
-
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result[
|
|
|
|
|
|
|
|
|
|
| 219 |
}
|
| 220 |
return prediction_input, prediction_result
|
| 221 |
|
|
|
|
| 222 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
| 223 |
# load dataset as pd DataFrame
|
| 224 |
# get features column from dataset
|
| 225 |
df, dataset_features = check_dataset_features_validity(d_id, config, split)
|
| 226 |
|
| 227 |
-
column_mapping, feature_map_df = infer_text_input_column(
|
|
|
|
|
|
|
| 228 |
if feature_map_df is None:
|
| 229 |
# dataset does not have any features
|
| 230 |
-
return None, None, None, None, None
|
| 231 |
|
| 232 |
# Retrieve all labels
|
| 233 |
id2label = ppl.model.config.id2label
|
| 234 |
|
| 235 |
# Infer labels
|
| 236 |
-
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
if id2label_df is None:
|
| 239 |
# does not able to infer output label column
|
| 240 |
return column_mapping, None, None, None, feature_map_df
|
| 241 |
-
|
| 242 |
# Get a sample prediction
|
| 243 |
-
prediction_input, prediction_result = get_sample_prediction(
|
|
|
|
|
|
|
| 244 |
if prediction_result is None:
|
| 245 |
# does not able to get a sample prediction
|
| 246 |
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
| 247 |
-
|
| 248 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
+
import logging
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
import huggingface_hub
|
| 6 |
+
import pandas as pd
|
| 7 |
from transformers import pipeline
|
| 8 |
|
| 9 |
+
|
| 10 |
def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
| 11 |
try:
|
| 12 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
|
|
|
| 15 |
features = [f for f in dataset_features.keys() if f != "label"]
|
| 16 |
return labels, features
|
| 17 |
except Exception as e:
|
| 18 |
+
logging.warning(
|
| 19 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
| 20 |
+
)
|
| 21 |
return None, None
|
| 22 |
|
| 23 |
+
|
| 24 |
def check_model(model_id):
|
| 25 |
try:
|
| 26 |
task = huggingface_hub.model_info(model_id).pipeline_tag
|
|
|
|
| 33 |
return ppl
|
| 34 |
except Exception:
|
| 35 |
return None
|
| 36 |
+
|
| 37 |
|
| 38 |
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
| 39 |
for model_label in id2label_mapping.keys():
|
|
|
|
| 50 |
continue
|
| 51 |
if len(feature.names) != len(id2label_mapping.keys()):
|
| 52 |
continue
|
| 53 |
+
|
| 54 |
dataset_labels = feature.names
|
| 55 |
# Try to match labels
|
| 56 |
for label in feature.names:
|
|
|
|
| 58 |
model_label = label
|
| 59 |
else:
|
| 60 |
# Try to find case unsensative
|
| 61 |
+
model_label, label = text_classificaiton_match_label_case_unsensative(
|
| 62 |
+
id2label_mapping, label
|
| 63 |
+
)
|
| 64 |
if model_label is not None:
|
| 65 |
id2label_mapping[model_label] = label
|
| 66 |
else:
|
|
|
|
| 68 |
|
| 69 |
return id2label_mapping, dataset_labels
|
| 70 |
|
| 71 |
+
|
| 72 |
+
"""
|
| 73 |
params:
|
| 74 |
column_mapping: dict
|
| 75 |
example: {
|
|
|
|
| 80 |
}
|
| 81 |
}
|
| 82 |
ppl: pipeline
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
|
| 86 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
| 87 |
# get the element in all the list elements
|
| 88 |
column_mapping = json.loads(column_mapping)
|
|
|
|
| 93 |
|
| 94 |
id2label = ppl.model.config.id2label
|
| 95 |
original_labels = set(id2label.values())
|
| 96 |
+
|
| 97 |
return user_labels == model_labels == original_labels
|
| 98 |
|
| 99 |
+
|
| 100 |
+
"""
|
| 101 |
params:
|
| 102 |
column_mapping: dict
|
| 103 |
dataset_features: dict
|
|
|
|
| 105 |
'text': Value(dtype='string', id=None),
|
| 106 |
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
|
| 107 |
}
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
|
| 111 |
def infer_text_input_column(column_mapping, dataset_features):
|
| 112 |
# Check whether we need to infer the text input column
|
| 113 |
infer_text_input_column = True
|
|
|
|
| 122 |
|
| 123 |
if infer_text_input_column:
|
| 124 |
# Try to retrieve one
|
| 125 |
+
candidates = [
|
| 126 |
+
f for f in dataset_features if dataset_features[f].dtype == "string"
|
| 127 |
+
]
|
| 128 |
+
feature_map_df = pd.DataFrame(
|
| 129 |
+
{"Dataset Features": [candidates[0]], "Model Input Features": ["text"]}
|
| 130 |
+
)
|
| 131 |
if len(candidates) > 0:
|
| 132 |
logging.debug(f"Candidates are {candidates}")
|
| 133 |
column_mapping["text"] = candidates[0]
|
| 134 |
+
|
| 135 |
return column_mapping, feature_map_df
|
| 136 |
|
| 137 |
+
|
| 138 |
+
"""
|
| 139 |
params:
|
| 140 |
column_mapping: dict
|
| 141 |
id2label_mapping: dict
|
|
|
|
| 145 |
'neutral': 'neutral',
|
| 146 |
'positive': 'positive'
|
| 147 |
}
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def infer_output_label_column(
|
| 152 |
+
column_mapping, id2label_mapping, id2label, dataset_labels
|
| 153 |
+
):
|
| 154 |
# Check whether we need to infer the output label column
|
| 155 |
if "data" in column_mapping.keys():
|
| 156 |
if isinstance(column_mapping["data"], list):
|
|
|
|
| 158 |
for user_label, model_label in column_mapping["data"]:
|
| 159 |
id2label_mapping[model_label] = user_label
|
| 160 |
elif None in id2label_mapping.values():
|
| 161 |
+
column_mapping["label"] = {i: None for i in id2label.keys()}
|
|
|
|
|
|
|
| 162 |
return column_mapping, None
|
| 163 |
+
|
| 164 |
if "data" not in column_mapping.keys():
|
| 165 |
# Column mapping should contain original model labels
|
| 166 |
column_mapping["label"] = {
|
| 167 |
+
str(i): id2label_mapping[label]
|
| 168 |
+
for i, label in zip(id2label.keys(), dataset_labels)
|
| 169 |
}
|
| 170 |
# print('>>>>> column_mapping >>>>>', column_mapping)
|
| 171 |
|
| 172 |
+
id2label_df = pd.DataFrame(
|
| 173 |
+
{
|
| 174 |
+
"Dataset Labels": dataset_labels,
|
| 175 |
+
"Model Prediction Labels": [
|
| 176 |
+
id2label_mapping[label] for label in dataset_labels
|
| 177 |
+
],
|
| 178 |
+
}
|
| 179 |
+
)
|
| 180 |
|
| 181 |
return column_mapping, id2label_df
|
| 182 |
|
| 183 |
+
|
| 184 |
def check_dataset_features_validity(d_id, config, split):
|
| 185 |
# We assume dataset is ok here
|
| 186 |
ds = datasets.load_dataset(d_id, config)[split]
|
|
|
|
| 194 |
|
| 195 |
return df, dataset_features
|
| 196 |
|
| 197 |
+
|
| 198 |
def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
| 199 |
# get a sample prediction from the model on the dataset
|
| 200 |
prediction_input = None
|
|
|
|
| 208 |
else:
|
| 209 |
prediction_input = ds[0]["text"]
|
| 210 |
|
| 211 |
+
print("prediction_input", prediction_input)
|
| 212 |
results = ppl(prediction_input, top_k=None)
|
| 213 |
# Display results in original label and mapped label
|
| 214 |
prediction_result = {
|
|
|
|
| 217 |
except Exception:
|
| 218 |
# Pipeline prediction failed, need to provide labels
|
| 219 |
return prediction_input, None
|
|
|
|
| 220 |
|
| 221 |
return prediction_input, prediction_result
|
| 222 |
|
|
|
|
| 235 |
except Exception:
|
| 236 |
# Pipeline prediction failed, need to provide labels
|
| 237 |
return prediction_input, None
|
| 238 |
+
|
| 239 |
# Display results in original label and mapped label
|
| 240 |
prediction_result = {
|
| 241 |
+
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result[
|
| 242 |
+
"score"
|
| 243 |
+
]
|
| 244 |
+
for result in results
|
| 245 |
}
|
| 246 |
return prediction_input, prediction_result
|
| 247 |
|
| 248 |
+
|
| 249 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
| 250 |
# load dataset as pd DataFrame
|
| 251 |
# get features column from dataset
|
| 252 |
df, dataset_features = check_dataset_features_validity(d_id, config, split)
|
| 253 |
|
| 254 |
+
column_mapping, feature_map_df = infer_text_input_column(
|
| 255 |
+
column_mapping, dataset_features
|
| 256 |
+
)
|
| 257 |
if feature_map_df is None:
|
| 258 |
# dataset does not have any features
|
| 259 |
+
return None, None, None, None, None
|
| 260 |
|
| 261 |
# Retrieve all labels
|
| 262 |
id2label = ppl.model.config.id2label
|
| 263 |
|
| 264 |
# Infer labels
|
| 265 |
+
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(
|
| 266 |
+
id2label, dataset_features
|
| 267 |
+
)
|
| 268 |
+
column_mapping, id2label_df = infer_output_label_column(
|
| 269 |
+
column_mapping, id2label_mapping, id2label, dataset_labels
|
| 270 |
+
)
|
| 271 |
if id2label_df is None:
|
| 272 |
# does not able to infer output label column
|
| 273 |
return column_mapping, None, None, None, feature_map_df
|
| 274 |
+
|
| 275 |
# Get a sample prediction
|
| 276 |
+
prediction_input, prediction_result = get_sample_prediction(
|
| 277 |
+
ppl, df, column_mapping, id2label_mapping
|
| 278 |
+
)
|
| 279 |
if prediction_result is None:
|
| 280 |
# does not able to get a sample prediction
|
| 281 |
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
| 282 |
+
|
| 283 |
+
return (
|
| 284 |
+
column_mapping,
|
| 285 |
+
prediction_input,
|
| 286 |
+
prediction_result,
|
| 287 |
+
id2label_df,
|
| 288 |
+
feature_map_df,
|
| 289 |
+
)
|
text_classification_ui_helpers.py
CHANGED
|
@@ -1,23 +1,35 @@
|
|
| 1 |
-
import
|
| 2 |
-
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW
|
| 3 |
import json
|
| 4 |
-
import os
|
| 5 |
import logging
|
|
|
|
| 6 |
import threading
|
| 7 |
-
|
| 8 |
import datasets
|
| 9 |
-
import
|
| 10 |
-
from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction
|
| 11 |
from transformers.pipelines import TextClassificationPipeline
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
MAX_LABELS = 20
|
| 14 |
MAX_FEATURES = 20
|
| 15 |
|
| 16 |
-
HF_REPO_ID =
|
| 17 |
-
HF_SPACE_ID =
|
| 18 |
-
HF_WRITE_TOKEN =
|
| 19 |
CONFIG_PATH = "./config.yaml"
|
| 20 |
|
|
|
|
| 21 |
def check_dataset_and_get_config(dataset_id):
|
| 22 |
try:
|
| 23 |
write_column_mapping(None)
|
|
@@ -27,6 +39,7 @@ def check_dataset_and_get_config(dataset_id):
|
|
| 27 |
# Dataset may not exist
|
| 28 |
pass
|
| 29 |
|
|
|
|
| 30 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
| 31 |
try:
|
| 32 |
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
|
@@ -36,8 +49,11 @@ def check_dataset_and_get_split(dataset_id, dataset_config):
|
|
| 36 |
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
| 37 |
pass
|
| 38 |
|
|
|
|
| 39 |
def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
|
| 40 |
-
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
|
|
|
|
|
|
| 41 |
if labels is None:
|
| 42 |
return
|
| 43 |
labels = [*labels]
|
|
@@ -54,45 +70,73 @@ def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *l
|
|
| 54 |
|
| 55 |
if "features" not in all_mappings.keys():
|
| 56 |
all_mappings["features"] = dict()
|
| 57 |
-
for i, feat in enumerate(labels[MAX_LABELS:(MAX_LABELS + MAX_FEATURES)]):
|
| 58 |
if feat:
|
| 59 |
all_mappings["features"][feat] = ds_features[i]
|
| 60 |
write_column_mapping(all_mappings)
|
| 61 |
|
|
|
|
| 62 |
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label):
|
| 63 |
model_labels = list(model_id2label.values())
|
| 64 |
len_model_labels = len(model_labels)
|
| 65 |
-
print(model_labels, model_id2label, 3%len_model_labels)
|
| 66 |
-
lables = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
| 68 |
# TODO: Substitute 'text' with more features for zero-shot
|
| 69 |
-
features = [
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
return lables + features
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
ppl = check_model(model_id)
|
| 75 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
| 76 |
gr.Warning("Please check your model.")
|
| 77 |
return (
|
| 78 |
gr.update(visible=False),
|
| 79 |
gr.update(visible=False),
|
| 80 |
-
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
|
| 81 |
)
|
| 82 |
-
|
| 83 |
-
dropdown_placement = [
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
gr.Warning("Model not found")
|
| 87 |
return (
|
| 88 |
gr.update(visible=False),
|
| 89 |
gr.update(visible=False),
|
| 90 |
gr.update(visible=False, open=False),
|
| 91 |
-
*dropdown_placement
|
| 92 |
)
|
| 93 |
model_id2label = ppl.model.config.id2label
|
| 94 |
-
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
# when dataset does not have labels or features
|
| 97 |
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
| 98 |
# gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
|
@@ -100,9 +144,9 @@ def check_model_and_show_prediction(model_id, dataset_id, dataset_config, datase
|
|
| 100 |
gr.update(visible=False),
|
| 101 |
gr.update(visible=False),
|
| 102 |
gr.update(visible=False, open=False),
|
| 103 |
-
*dropdown_placement
|
| 104 |
)
|
| 105 |
-
|
| 106 |
column_mappings = list_labels_and_features_from_dataset(
|
| 107 |
ds_labels,
|
| 108 |
ds_features,
|
|
@@ -111,23 +155,29 @@ def check_model_and_show_prediction(model_id, dataset_id, dataset_config, datase
|
|
| 111 |
|
| 112 |
# when labels or features are not aligned
|
| 113 |
# show manually column mapping
|
| 114 |
-
if
|
|
|
|
|
|
|
|
|
|
| 115 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 116 |
return (
|
| 117 |
gr.update(visible=False),
|
| 118 |
gr.update(visible=False),
|
| 119 |
gr.update(visible=True, open=True),
|
| 120 |
-
*column_mappings
|
| 121 |
)
|
| 122 |
|
| 123 |
-
prediction_input, prediction_output = get_example_prediction(
|
|
|
|
|
|
|
| 124 |
return (
|
| 125 |
gr.update(value=prediction_input, visible=True),
|
| 126 |
gr.update(value=prediction_output, visible=True),
|
| 127 |
gr.update(visible=True, open=False),
|
| 128 |
-
*column_mappings
|
| 129 |
)
|
| 130 |
|
|
|
|
| 131 |
def try_submit(m_id, d_id, config, split, local, uid):
|
| 132 |
all_mappings = read_column_mapping(CONFIG_PATH)
|
| 133 |
|
|
@@ -139,7 +189,7 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
| 139 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 140 |
return (gr.update(interactive=True), gr.update(visible=False))
|
| 141 |
label_mapping = all_mappings["labels"]
|
| 142 |
-
|
| 143 |
if "features" not in all_mappings.keys():
|
| 144 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 145 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
@@ -150,32 +200,47 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
| 150 |
command = [
|
| 151 |
"python",
|
| 152 |
"cli.py",
|
| 153 |
-
"--loader",
|
| 154 |
-
"
|
| 155 |
-
"--
|
| 156 |
-
|
| 157 |
-
"--
|
| 158 |
-
|
| 159 |
-
"--
|
| 160 |
-
|
| 161 |
-
"--
|
| 162 |
-
|
| 163 |
-
"--
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
]
|
| 166 |
|
| 167 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
| 168 |
logging.info(f"Start local evaluation on {eval_str}")
|
| 169 |
save_job_to_pipe(uid, command, threading.Lock())
|
| 170 |
-
write_log_to_user_file(
|
|
|
|
|
|
|
|
|
|
| 171 |
gr.Info(f"Start local evaluation on {eval_str}")
|
| 172 |
|
| 173 |
return (
|
| 174 |
gr.update(interactive=False),
|
| 175 |
-
gr.update(lines=5, visible=True, interactive=False)
|
|
|
|
| 176 |
|
| 177 |
else:
|
| 178 |
gr.Info("TODO: Submit task to an endpoint")
|
| 179 |
-
|
| 180 |
-
return (gr.update(interactive=True), # Submit button
|
| 181 |
-
gr.update(visible=False))
|
|
|
|
| 1 |
+
import collections
|
|
|
|
| 2 |
import json
|
|
|
|
| 3 |
import logging
|
| 4 |
+
import os
|
| 5 |
import threading
|
| 6 |
+
|
| 7 |
import datasets
|
| 8 |
+
import gradio as gr
|
|
|
|
| 9 |
from transformers.pipelines import TextClassificationPipeline
|
| 10 |
|
| 11 |
+
from io_utils import (
|
| 12 |
+
read_column_mapping,
|
| 13 |
+
save_job_to_pipe,
|
| 14 |
+
write_column_mapping,
|
| 15 |
+
write_log_to_user_file,
|
| 16 |
+
)
|
| 17 |
+
from text_classification import (
|
| 18 |
+
check_model,
|
| 19 |
+
get_example_prediction,
|
| 20 |
+
get_labels_and_features_from_dataset,
|
| 21 |
+
)
|
| 22 |
+
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW
|
| 23 |
+
|
| 24 |
MAX_LABELS = 20
|
| 25 |
MAX_FEATURES = 20
|
| 26 |
|
| 27 |
+
HF_REPO_ID = "HF_REPO_ID"
|
| 28 |
+
HF_SPACE_ID = "SPACE_ID"
|
| 29 |
+
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
| 30 |
CONFIG_PATH = "./config.yaml"
|
| 31 |
|
| 32 |
+
|
| 33 |
def check_dataset_and_get_config(dataset_id):
|
| 34 |
try:
|
| 35 |
write_column_mapping(None)
|
|
|
|
| 39 |
# Dataset may not exist
|
| 40 |
pass
|
| 41 |
|
| 42 |
+
|
| 43 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
| 44 |
try:
|
| 45 |
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
|
|
|
| 49 |
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
| 50 |
pass
|
| 51 |
|
| 52 |
+
|
| 53 |
def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
|
| 54 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
| 55 |
+
dataset_id, dataset_config, dataset_split
|
| 56 |
+
)
|
| 57 |
if labels is None:
|
| 58 |
return
|
| 59 |
labels = [*labels]
|
|
|
|
| 70 |
|
| 71 |
if "features" not in all_mappings.keys():
|
| 72 |
all_mappings["features"] = dict()
|
| 73 |
+
for i, feat in enumerate(labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)]):
|
| 74 |
if feat:
|
| 75 |
all_mappings["features"][feat] = ds_features[i]
|
| 76 |
write_column_mapping(all_mappings)
|
| 77 |
|
| 78 |
+
|
| 79 |
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label):
|
| 80 |
model_labels = list(model_id2label.values())
|
| 81 |
len_model_labels = len(model_labels)
|
| 82 |
+
print(model_labels, model_id2label, 3 % len_model_labels)
|
| 83 |
+
lables = [
|
| 84 |
+
gr.Dropdown(
|
| 85 |
+
label=f"{label}",
|
| 86 |
+
choices=model_labels,
|
| 87 |
+
value=model_id2label[i % len_model_labels],
|
| 88 |
+
interactive=True,
|
| 89 |
+
visible=True,
|
| 90 |
+
)
|
| 91 |
+
for i, label in enumerate(ds_labels[:MAX_LABELS])
|
| 92 |
+
]
|
| 93 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
| 94 |
# TODO: Substitute 'text' with more features for zero-shot
|
| 95 |
+
features = [
|
| 96 |
+
gr.Dropdown(
|
| 97 |
+
label=f"{feature}",
|
| 98 |
+
choices=ds_features,
|
| 99 |
+
value=ds_features[0],
|
| 100 |
+
interactive=True,
|
| 101 |
+
visible=True,
|
| 102 |
+
)
|
| 103 |
+
for feature in ["text"]
|
| 104 |
+
]
|
| 105 |
+
features += [
|
| 106 |
+
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
|
| 107 |
+
]
|
| 108 |
return lables + features
|
| 109 |
|
| 110 |
+
|
| 111 |
+
def check_model_and_show_prediction(
|
| 112 |
+
model_id, dataset_id, dataset_config, dataset_split
|
| 113 |
+
):
|
| 114 |
ppl = check_model(model_id)
|
| 115 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
| 116 |
gr.Warning("Please check your model.")
|
| 117 |
return (
|
| 118 |
gr.update(visible=False),
|
| 119 |
gr.update(visible=False),
|
| 120 |
+
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
|
| 121 |
)
|
| 122 |
+
|
| 123 |
+
dropdown_placement = [
|
| 124 |
+
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
if ppl is None: # pipeline not found
|
| 128 |
gr.Warning("Model not found")
|
| 129 |
return (
|
| 130 |
gr.update(visible=False),
|
| 131 |
gr.update(visible=False),
|
| 132 |
gr.update(visible=False, open=False),
|
| 133 |
+
*dropdown_placement,
|
| 134 |
)
|
| 135 |
model_id2label = ppl.model.config.id2label
|
| 136 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
| 137 |
+
dataset_id, dataset_config, dataset_split
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
# when dataset does not have labels or features
|
| 141 |
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
| 142 |
# gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
|
|
|
| 144 |
gr.update(visible=False),
|
| 145 |
gr.update(visible=False),
|
| 146 |
gr.update(visible=False, open=False),
|
| 147 |
+
*dropdown_placement,
|
| 148 |
)
|
| 149 |
+
|
| 150 |
column_mappings = list_labels_and_features_from_dataset(
|
| 151 |
ds_labels,
|
| 152 |
ds_features,
|
|
|
|
| 155 |
|
| 156 |
# when labels or features are not aligned
|
| 157 |
# show manually column mapping
|
| 158 |
+
if (
|
| 159 |
+
collections.Counter(model_id2label.values()) != collections.Counter(ds_labels)
|
| 160 |
+
or ds_features[0] != "text"
|
| 161 |
+
):
|
| 162 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 163 |
return (
|
| 164 |
gr.update(visible=False),
|
| 165 |
gr.update(visible=False),
|
| 166 |
gr.update(visible=True, open=True),
|
| 167 |
+
*column_mappings,
|
| 168 |
)
|
| 169 |
|
| 170 |
+
prediction_input, prediction_output = get_example_prediction(
|
| 171 |
+
ppl, dataset_id, dataset_config, dataset_split
|
| 172 |
+
)
|
| 173 |
return (
|
| 174 |
gr.update(value=prediction_input, visible=True),
|
| 175 |
gr.update(value=prediction_output, visible=True),
|
| 176 |
gr.update(visible=True, open=False),
|
| 177 |
+
*column_mappings,
|
| 178 |
)
|
| 179 |
|
| 180 |
+
|
| 181 |
def try_submit(m_id, d_id, config, split, local, uid):
|
| 182 |
all_mappings = read_column_mapping(CONFIG_PATH)
|
| 183 |
|
|
|
|
| 189 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 190 |
return (gr.update(interactive=True), gr.update(visible=False))
|
| 191 |
label_mapping = all_mappings["labels"]
|
| 192 |
+
|
| 193 |
if "features" not in all_mappings.keys():
|
| 194 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 195 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
|
|
| 200 |
command = [
|
| 201 |
"python",
|
| 202 |
"cli.py",
|
| 203 |
+
"--loader",
|
| 204 |
+
"huggingface",
|
| 205 |
+
"--model",
|
| 206 |
+
m_id,
|
| 207 |
+
"--dataset",
|
| 208 |
+
d_id,
|
| 209 |
+
"--dataset_config",
|
| 210 |
+
config,
|
| 211 |
+
"--dataset_split",
|
| 212 |
+
split,
|
| 213 |
+
"--hf_token",
|
| 214 |
+
os.environ.get(HF_WRITE_TOKEN),
|
| 215 |
+
"--discussion_repo",
|
| 216 |
+
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
| 217 |
+
"--output_format",
|
| 218 |
+
"markdown",
|
| 219 |
+
"--output_portal",
|
| 220 |
+
"huggingface",
|
| 221 |
+
"--feature_mapping",
|
| 222 |
+
json.dumps(feature_mapping),
|
| 223 |
+
"--label_mapping",
|
| 224 |
+
json.dumps(label_mapping),
|
| 225 |
+
"--scan_config",
|
| 226 |
+
"../config.yaml",
|
| 227 |
]
|
| 228 |
|
| 229 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
| 230 |
logging.info(f"Start local evaluation on {eval_str}")
|
| 231 |
save_job_to_pipe(uid, command, threading.Lock())
|
| 232 |
+
write_log_to_user_file(
|
| 233 |
+
uid,
|
| 234 |
+
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
|
| 235 |
+
)
|
| 236 |
gr.Info(f"Start local evaluation on {eval_str}")
|
| 237 |
|
| 238 |
return (
|
| 239 |
gr.update(interactive=False),
|
| 240 |
+
gr.update(lines=5, visible=True, interactive=False),
|
| 241 |
+
)
|
| 242 |
|
| 243 |
else:
|
| 244 |
gr.Info("TODO: Submit task to an endpoint")
|
| 245 |
+
|
| 246 |
+
return (gr.update(interactive=True), gr.update(visible=False)) # Submit button
|
|
|
validate_queue.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def sleep_a_while():
|
| 8 |
+
seconds = random.randint(5, 10)
|
| 9 |
+
print(f"Working for {seconds} seconds")
|
| 10 |
+
start = time.time()
|
| 11 |
+
while start + seconds > time.time():
|
| 12 |
+
continue
|
| 13 |
+
return str(seconds)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
with gr.Blocks() as iface:
|
| 18 |
+
text = gr.Textbox(label="Slept second")
|
| 19 |
+
|
| 20 |
+
run_btn = gr.Button("Run")
|
| 21 |
+
run_btn.click(sleep_a_while, queue=False, outputs=text, concurrency_limit=1)
|
| 22 |
+
|
| 23 |
+
if __name__ == "__main__":
|
| 24 |
+
iface.queue(max_size=2, default_concurrency_limit=2).launch()
|
wordings.py
CHANGED
|
@@ -1,22 +1,22 @@
|
|
| 1 |
-
INTRODUCTION_MD =
|
| 2 |
<h1 style="text-align: center;">
|
| 3 |
🐢Giskard Evaluator
|
| 4 |
</h1>
|
| 5 |
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
| 6 |
-
|
| 7 |
-
CONFIRM_MAPPING_DETAILS_MD =
|
| 8 |
<h1 style="text-align: center;">
|
| 9 |
Confirm Pre-processing Details
|
| 10 |
</h1>
|
| 11 |
Please confirm the pre-processing details below. Align the column names of your model in the <b>dropdown</b> menu to your dataset's. If you are not sure, please double check your model and dataset.
|
| 12 |
-
|
| 13 |
-
CONFIRM_MAPPING_DETAILS_FAIL_MD =
|
| 14 |
<h1 style="text-align: center;">
|
| 15 |
Confirm Pre-processing Details
|
| 16 |
</h1>
|
| 17 |
Sorry, we cannot align the input/output of your dataset with the model. <b>Pleaser double check your model and dataset.</b>
|
| 18 |
-
|
| 19 |
|
| 20 |
-
CONFIRM_MAPPING_DETAILS_FAIL_RAW=
|
| 21 |
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
| 22 |
-
|
|
|
|
| 1 |
+
INTRODUCTION_MD = """
|
| 2 |
<h1 style="text-align: center;">
|
| 3 |
🐢Giskard Evaluator
|
| 4 |
</h1>
|
| 5 |
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
| 6 |
+
"""
|
| 7 |
+
CONFIRM_MAPPING_DETAILS_MD = """
|
| 8 |
<h1 style="text-align: center;">
|
| 9 |
Confirm Pre-processing Details
|
| 10 |
</h1>
|
| 11 |
Please confirm the pre-processing details below. Align the column names of your model in the <b>dropdown</b> menu to your dataset's. If you are not sure, please double check your model and dataset.
|
| 12 |
+
"""
|
| 13 |
+
CONFIRM_MAPPING_DETAILS_FAIL_MD = """
|
| 14 |
<h1 style="text-align: center;">
|
| 15 |
Confirm Pre-processing Details
|
| 16 |
</h1>
|
| 17 |
Sorry, we cannot align the input/output of your dataset with the model. <b>Pleaser double check your model and dataset.</b>
|
| 18 |
+
"""
|
| 19 |
|
| 20 |
+
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
| 21 |
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
| 22 |
+
"""
|