Spaces:
Running
Running
GSK-2509 fix not standard label columns (go_emotions) (#29)
Browse files- add conditions to extract labels from dataset (d81d6fd28b4998c5d7a4ae2bb505594f3cc9dfbd)
- Merge branch 'main' into pr/29 (bedf925c2a667142d0a1c7250987c84e0ad615d3)
- Fix for flattened raw config (21e0bb3cab9bc33333e7495856224aaff1f571fa)
- move inference api parameters (fc7c452cd6a03999b2cd703dd4ac986f1521e5da)
- add predict button (44ab78abaa1f08d260528e29369f023f6188e9cc)
Co-authored-by: zcy <[email protected]>
- app.py +1 -1
- app_text_classification.py +42 -37
- io_utils.py +2 -5
- text_classification.py +11 -2
- text_classification_ui_helpers.py +145 -94
app.py
CHANGED
|
@@ -10,7 +10,7 @@ from run_jobs import start_process_run_job, stop_thread
|
|
| 10 |
try:
|
| 11 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
| 12 |
with gr.Tab("Text Classification"):
|
| 13 |
-
get_demo_text_classification(
|
| 14 |
with gr.Tab("Leaderboard"):
|
| 15 |
get_demo_leaderboard()
|
| 16 |
with gr.Tab("Logs(Debug)"):
|
|
|
|
| 10 |
try:
|
| 11 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
| 12 |
with gr.Tab("Text Classification"):
|
| 13 |
+
get_demo_text_classification()
|
| 14 |
with gr.Tab("Leaderboard"):
|
| 15 |
get_demo_leaderboard()
|
| 16 |
with gr.Tab("Logs(Debug)"):
|
app_text_classification.py
CHANGED
|
@@ -2,17 +2,17 @@ import uuid
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
-
from io_utils import (get_logs_file,
|
| 6 |
-
write_inference_type, write_scanners)
|
| 7 |
from text_classification_ui_helpers import (check_dataset_and_get_config,
|
| 8 |
check_dataset_and_get_split,
|
| 9 |
-
|
| 10 |
deselect_run_inference,
|
| 11 |
select_run_mode, try_submit,
|
| 12 |
-
write_column_mapping_to_config
|
|
|
|
| 13 |
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD
|
| 14 |
|
| 15 |
-
MAX_LABELS =
|
| 16 |
MAX_FEATURES = 20
|
| 17 |
|
| 18 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
|
@@ -20,7 +20,7 @@ EXAMPLE_DATA_ID = "tweet_eval"
|
|
| 20 |
CONFIG_PATH = "./config.yaml"
|
| 21 |
|
| 22 |
|
| 23 |
-
def get_demo(
|
| 24 |
with gr.Row():
|
| 25 |
gr.Markdown(INTRODUCTION_MD)
|
| 26 |
uid_label = gr.Textbox(
|
|
@@ -41,6 +41,13 @@ def get_demo(demo):
|
|
| 41 |
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
| 42 |
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
with gr.Row():
|
| 45 |
example_input = gr.HTML(visible=False)
|
| 46 |
with gr.Row():
|
|
@@ -55,23 +62,17 @@ def get_demo(demo):
|
|
| 55 |
column_mappings = []
|
| 56 |
with gr.Row():
|
| 57 |
with gr.Column():
|
|
|
|
| 58 |
for _ in range(MAX_LABELS):
|
| 59 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 60 |
with gr.Column():
|
|
|
|
| 61 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
| 62 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 63 |
|
| 64 |
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
|
| 65 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
| 66 |
-
run_inference = gr.Checkbox(value=
|
| 67 |
-
|
| 68 |
-
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[run_inference])
|
| 69 |
-
def get_run_mode(uid):
|
| 70 |
-
return gr.update(
|
| 71 |
-
value=read_inference_type(uid) == "hf_inference_api"
|
| 72 |
-
and not run_local.value
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
inference_token = gr.Textbox(
|
| 76 |
value="",
|
| 77 |
label="HF Token for Inference API",
|
|
@@ -97,7 +98,7 @@ def get_demo(demo):
|
|
| 97 |
run_btn = gr.Button(
|
| 98 |
"Get Evaluation Result",
|
| 99 |
variant="primary",
|
| 100 |
-
interactive=
|
| 101 |
size="lg",
|
| 102 |
)
|
| 103 |
|
|
@@ -120,7 +121,7 @@ def get_demo(demo):
|
|
| 120 |
|
| 121 |
run_inference.change(
|
| 122 |
select_run_mode,
|
| 123 |
-
inputs=[run_inference
|
| 124 |
outputs=[inference_token, run_local],
|
| 125 |
)
|
| 126 |
|
|
@@ -130,17 +131,10 @@ def get_demo(demo):
|
|
| 130 |
outputs=[inference_token, run_inference],
|
| 131 |
)
|
| 132 |
|
| 133 |
-
inference_token.change(
|
| 134 |
-
write_inference_type, inputs=[run_inference, inference_token, uid_label]
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
gr.on(
|
| 138 |
triggers=[label.change for label in column_mappings],
|
| 139 |
fn=write_column_mapping_to_config,
|
| 140 |
inputs=[
|
| 141 |
-
dataset_id_input,
|
| 142 |
-
dataset_config_input,
|
| 143 |
-
dataset_split_input,
|
| 144 |
uid_label,
|
| 145 |
*column_mappings,
|
| 146 |
],
|
|
@@ -151,9 +145,6 @@ def get_demo(demo):
|
|
| 151 |
triggers=[label.input for label in column_mappings],
|
| 152 |
fn=write_column_mapping_to_config,
|
| 153 |
inputs=[
|
| 154 |
-
dataset_id_input,
|
| 155 |
-
dataset_config_input,
|
| 156 |
-
dataset_split_input,
|
| 157 |
uid_label,
|
| 158 |
*column_mappings,
|
| 159 |
],
|
|
@@ -164,19 +155,33 @@ def get_demo(demo):
|
|
| 164 |
model_id_input.change,
|
| 165 |
dataset_id_input.change,
|
| 166 |
dataset_config_input.change,
|
| 167 |
-
dataset_split_input.change,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
],
|
| 169 |
-
fn=
|
| 170 |
inputs=[
|
| 171 |
model_id_input,
|
| 172 |
dataset_id_input,
|
| 173 |
dataset_config_input,
|
| 174 |
dataset_split_input,
|
|
|
|
| 175 |
],
|
| 176 |
outputs=[
|
| 177 |
example_input,
|
| 178 |
example_prediction,
|
| 179 |
column_mapping_accordion,
|
|
|
|
| 180 |
*column_mappings,
|
| 181 |
],
|
| 182 |
)
|
|
@@ -192,6 +197,8 @@ def get_demo(demo):
|
|
| 192 |
dataset_config_input,
|
| 193 |
dataset_split_input,
|
| 194 |
run_local,
|
|
|
|
|
|
|
| 195 |
uid_label,
|
| 196 |
],
|
| 197 |
outputs=[run_btn, logs],
|
|
@@ -202,12 +209,10 @@ def get_demo(demo):
|
|
| 202 |
|
| 203 |
gr.on(
|
| 204 |
triggers=[
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
run_local.change,
|
| 210 |
-
scanners.change,
|
| 211 |
],
|
| 212 |
fn=enable_run_btn,
|
| 213 |
inputs=None,
|
|
@@ -215,8 +220,8 @@ def get_demo(demo):
|
|
| 215 |
)
|
| 216 |
|
| 217 |
gr.on(
|
| 218 |
-
triggers=[label.
|
| 219 |
fn=enable_run_btn,
|
| 220 |
-
inputs=
|
| 221 |
outputs=[run_btn],
|
| 222 |
)
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
+
from io_utils import (get_logs_file, read_scanners, write_scanners)
|
|
|
|
| 6 |
from text_classification_ui_helpers import (check_dataset_and_get_config,
|
| 7 |
check_dataset_and_get_split,
|
| 8 |
+
align_columns_and_show_prediction,
|
| 9 |
deselect_run_inference,
|
| 10 |
select_run_mode, try_submit,
|
| 11 |
+
write_column_mapping_to_config,
|
| 12 |
+
precheck_model_ds_enable_example_btn)
|
| 13 |
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD
|
| 14 |
|
| 15 |
+
MAX_LABELS = 40
|
| 16 |
MAX_FEATURES = 20
|
| 17 |
|
| 18 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
|
|
|
| 20 |
CONFIG_PATH = "./config.yaml"
|
| 21 |
|
| 22 |
|
| 23 |
+
def get_demo():
|
| 24 |
with gr.Row():
|
| 25 |
gr.Markdown(INTRODUCTION_MD)
|
| 26 |
uid_label = gr.Textbox(
|
|
|
|
| 41 |
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
| 42 |
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
| 43 |
|
| 44 |
+
with gr.Row():
|
| 45 |
+
example_btn = gr.Button(
|
| 46 |
+
"Auto-align Columns & Get Sample Prediction",
|
| 47 |
+
visible=True,
|
| 48 |
+
variant="primary",
|
| 49 |
+
interactive=False)
|
| 50 |
+
|
| 51 |
with gr.Row():
|
| 52 |
example_input = gr.HTML(visible=False)
|
| 53 |
with gr.Row():
|
|
|
|
| 62 |
column_mappings = []
|
| 63 |
with gr.Row():
|
| 64 |
with gr.Column():
|
| 65 |
+
gr.Markdown("# Label Mapping")
|
| 66 |
for _ in range(MAX_LABELS):
|
| 67 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 68 |
with gr.Column():
|
| 69 |
+
gr.Markdown("# Feature Mapping")
|
| 70 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
| 71 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 72 |
|
| 73 |
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
|
| 74 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
| 75 |
+
run_inference = gr.Checkbox(value=False, label="Run with Inference API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
inference_token = gr.Textbox(
|
| 77 |
value="",
|
| 78 |
label="HF Token for Inference API",
|
|
|
|
| 98 |
run_btn = gr.Button(
|
| 99 |
"Get Evaluation Result",
|
| 100 |
variant="primary",
|
| 101 |
+
interactive=False,
|
| 102 |
size="lg",
|
| 103 |
)
|
| 104 |
|
|
|
|
| 121 |
|
| 122 |
run_inference.change(
|
| 123 |
select_run_mode,
|
| 124 |
+
inputs=[run_inference],
|
| 125 |
outputs=[inference_token, run_local],
|
| 126 |
)
|
| 127 |
|
|
|
|
| 131 |
outputs=[inference_token, run_inference],
|
| 132 |
)
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
gr.on(
|
| 135 |
triggers=[label.change for label in column_mappings],
|
| 136 |
fn=write_column_mapping_to_config,
|
| 137 |
inputs=[
|
|
|
|
|
|
|
|
|
|
| 138 |
uid_label,
|
| 139 |
*column_mappings,
|
| 140 |
],
|
|
|
|
| 145 |
triggers=[label.input for label in column_mappings],
|
| 146 |
fn=write_column_mapping_to_config,
|
| 147 |
inputs=[
|
|
|
|
|
|
|
|
|
|
| 148 |
uid_label,
|
| 149 |
*column_mappings,
|
| 150 |
],
|
|
|
|
| 155 |
model_id_input.change,
|
| 156 |
dataset_id_input.change,
|
| 157 |
dataset_config_input.change,
|
| 158 |
+
dataset_split_input.change],
|
| 159 |
+
fn=precheck_model_ds_enable_example_btn,
|
| 160 |
+
inputs=[
|
| 161 |
+
model_id_input,
|
| 162 |
+
dataset_id_input,
|
| 163 |
+
dataset_config_input,
|
| 164 |
+
dataset_split_input,
|
| 165 |
+
],
|
| 166 |
+
outputs=[example_btn])
|
| 167 |
+
|
| 168 |
+
gr.on(
|
| 169 |
+
triggers=[
|
| 170 |
+
example_btn.click,
|
| 171 |
],
|
| 172 |
+
fn=align_columns_and_show_prediction,
|
| 173 |
inputs=[
|
| 174 |
model_id_input,
|
| 175 |
dataset_id_input,
|
| 176 |
dataset_config_input,
|
| 177 |
dataset_split_input,
|
| 178 |
+
uid_label,
|
| 179 |
],
|
| 180 |
outputs=[
|
| 181 |
example_input,
|
| 182 |
example_prediction,
|
| 183 |
column_mapping_accordion,
|
| 184 |
+
run_btn,
|
| 185 |
*column_mappings,
|
| 186 |
],
|
| 187 |
)
|
|
|
|
| 197 |
dataset_config_input,
|
| 198 |
dataset_split_input,
|
| 199 |
run_local,
|
| 200 |
+
run_inference,
|
| 201 |
+
inference_token,
|
| 202 |
uid_label,
|
| 203 |
],
|
| 204 |
outputs=[run_btn, logs],
|
|
|
|
| 209 |
|
| 210 |
gr.on(
|
| 211 |
triggers=[
|
| 212 |
+
run_inference.input,
|
| 213 |
+
run_local.input,
|
| 214 |
+
inference_token.input,
|
| 215 |
+
scanners.input,
|
|
|
|
|
|
|
| 216 |
],
|
| 217 |
fn=enable_run_btn,
|
| 218 |
inputs=None,
|
|
|
|
| 220 |
)
|
| 221 |
|
| 222 |
gr.on(
|
| 223 |
+
triggers=[label.input for label in column_mappings],
|
| 224 |
fn=enable_run_btn,
|
| 225 |
+
inputs=column_mappings,
|
| 226 |
outputs=[run_btn],
|
| 227 |
)
|
io_utils.py
CHANGED
|
@@ -76,7 +76,6 @@ def read_column_mapping(uid):
|
|
| 76 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 77 |
if config:
|
| 78 |
column_mapping = config.get("column_mapping", dict())
|
| 79 |
-
f.close()
|
| 80 |
return column_mapping
|
| 81 |
|
| 82 |
|
|
@@ -84,7 +83,6 @@ def read_column_mapping(uid):
|
|
| 84 |
def write_column_mapping(mapping, uid):
|
| 85 |
with open(get_yaml_path(uid), "r") as f:
|
| 86 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 87 |
-
f.close()
|
| 88 |
|
| 89 |
if config is None:
|
| 90 |
return
|
|
@@ -92,10 +90,9 @@ def write_column_mapping(mapping, uid):
|
|
| 92 |
del config["column_mapping"]
|
| 93 |
else:
|
| 94 |
config["column_mapping"] = mapping
|
| 95 |
-
|
| 96 |
with open(get_yaml_path(uid), "w") as f:
|
| 97 |
-
yaml
|
| 98 |
-
|
| 99 |
|
| 100 |
|
| 101 |
# convert column mapping dataframe to json
|
|
|
|
| 76 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 77 |
if config:
|
| 78 |
column_mapping = config.get("column_mapping", dict())
|
|
|
|
| 79 |
return column_mapping
|
| 80 |
|
| 81 |
|
|
|
|
| 83 |
def write_column_mapping(mapping, uid):
|
| 84 |
with open(get_yaml_path(uid), "r") as f:
|
| 85 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
|
| 86 |
|
| 87 |
if config is None:
|
| 88 |
return
|
|
|
|
| 90 |
del config["column_mapping"]
|
| 91 |
else:
|
| 92 |
config["column_mapping"] = mapping
|
|
|
|
| 93 |
with open(get_yaml_path(uid), "w") as f:
|
| 94 |
+
# yaml Dumper will by default sort the keys
|
| 95 |
+
yaml.dump(config, f, Dumper=Dumper, sort_keys=False)
|
| 96 |
|
| 97 |
|
| 98 |
# convert column mapping dataframe to json
|
text_classification.py
CHANGED
|
@@ -15,8 +15,17 @@ def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
|
| 15 |
try:
|
| 16 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
| 17 |
dataset_features = ds.features
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
return labels, features
|
| 21 |
except Exception as e:
|
| 22 |
logging.warning(
|
|
|
|
| 15 |
try:
|
| 16 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
| 17 |
dataset_features = ds.features
|
| 18 |
+
label_keys = [i for i in dataset_features.keys() if i.startswith('label')]
|
| 19 |
+
if len(label_keys) == 0: # no labels found
|
| 20 |
+
# return everything for post processing
|
| 21 |
+
return list(dataset_features.keys()), list(dataset_features.keys())
|
| 22 |
+
if not isinstance(dataset_features[label_keys[0]], datasets.ClassLabel):
|
| 23 |
+
if hasattr(dataset_features[label_keys[0]], 'feature'):
|
| 24 |
+
label_feat = dataset_features[label_keys[0]].feature
|
| 25 |
+
labels = label_feat.names
|
| 26 |
+
else:
|
| 27 |
+
labels = [dataset_features[label_keys[0]].names]
|
| 28 |
+
features = [f for f in dataset_features.keys() if not f.startswith("label")]
|
| 29 |
return labels, features
|
| 30 |
except Exception as e:
|
| 31 |
logging.warning(
|
text_classification_ui_helpers.py
CHANGED
|
@@ -10,7 +10,7 @@ from transformers.pipelines import TextClassificationPipeline
|
|
| 10 |
from wordings import get_styled_input
|
| 11 |
|
| 12 |
from io_utils import (get_yaml_path, read_column_mapping, save_job_to_pipe,
|
| 13 |
-
write_column_mapping,
|
| 14 |
write_log_to_user_file)
|
| 15 |
from text_classification import (check_model, get_example_prediction,
|
| 16 |
get_labels_and_features_from_dataset)
|
|
@@ -18,7 +18,7 @@ from wordings import (CHECK_CONFIG_OR_SPLIT_RAW,
|
|
| 18 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
| 19 |
MAPPING_STYLED_ERROR_WARNING)
|
| 20 |
|
| 21 |
-
MAX_LABELS =
|
| 22 |
MAX_FEATURES = 20
|
| 23 |
|
| 24 |
HF_REPO_ID = "HF_REPO_ID"
|
|
@@ -51,10 +51,8 @@ def check_dataset_and_get_split(dataset_id, dataset_config):
|
|
| 51 |
pass
|
| 52 |
|
| 53 |
|
| 54 |
-
def select_run_mode(run_inf
|
| 55 |
if run_inf:
|
| 56 |
-
if len(inf_token) > 0:
|
| 57 |
-
write_inference_type(run_inf, inf_token, uid)
|
| 58 |
return (gr.update(visible=True), gr.update(value=False))
|
| 59 |
else:
|
| 60 |
return (gr.update(visible=False), gr.update(value=True))
|
|
@@ -68,46 +66,62 @@ def deselect_run_inference(run_local):
|
|
| 68 |
|
| 69 |
|
| 70 |
def write_column_mapping_to_config(
|
| 71 |
-
|
| 72 |
):
|
| 73 |
# TODO: Substitute 'text' with more features for zero-shot
|
| 74 |
# we are not using ds features because we only support "text" for now
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
)
|
| 78 |
if labels is None:
|
| 79 |
return
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
all_mappings = dict()
|
| 82 |
-
|
| 83 |
-
if "labels" not in all_mappings.keys():
|
| 84 |
-
all_mappings["labels"] = dict()
|
| 85 |
-
for i, label in enumerate(labels[:MAX_LABELS]):
|
| 86 |
-
if label:
|
| 87 |
-
all_mappings["labels"][label] = ds_labels[i % len(ds_labels)]
|
| 88 |
-
if "features" not in all_mappings.keys():
|
| 89 |
-
all_mappings["features"] = dict()
|
| 90 |
-
for _, feat in enumerate(labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)]):
|
| 91 |
-
if feat:
|
| 92 |
-
# TODO: Substitute 'text' with more features for zero-shot
|
| 93 |
-
all_mappings["features"]["text"] = feat
|
| 94 |
write_column_mapping(all_mappings, uid)
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
model_labels = list(model_id2label.values())
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
lables = [
|
| 101 |
gr.Dropdown(
|
| 102 |
label=f"{label}",
|
| 103 |
choices=model_labels,
|
| 104 |
-
value=model_id2label[i %
|
| 105 |
interactive=True,
|
| 106 |
visible=True,
|
| 107 |
)
|
| 108 |
-
for i, label in enumerate(ds_labels
|
| 109 |
]
|
| 110 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
|
|
|
|
|
|
| 111 |
# TODO: Substitute 'text' with more features for zero-shot
|
| 112 |
features = [
|
| 113 |
gr.Dropdown(
|
|
@@ -122,11 +136,27 @@ def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label
|
|
| 122 |
features += [
|
| 123 |
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
|
| 124 |
]
|
|
|
|
|
|
|
|
|
|
| 125 |
return lables + features
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
def
|
| 129 |
-
model_id, dataset_id, dataset_config, dataset_split
|
| 130 |
):
|
| 131 |
ppl = check_model(model_id)
|
| 132 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
|
@@ -134,6 +164,8 @@ def check_model_and_show_prediction(
|
|
| 134 |
return (
|
| 135 |
gr.update(visible=False),
|
| 136 |
gr.update(visible=False),
|
|
|
|
|
|
|
| 137 |
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
|
| 138 |
)
|
| 139 |
|
|
@@ -147,6 +179,7 @@ def check_model_and_show_prediction(
|
|
| 147 |
gr.update(visible=False),
|
| 148 |
gr.update(visible=False),
|
| 149 |
gr.update(visible=False, open=False),
|
|
|
|
| 150 |
*dropdown_placement,
|
| 151 |
)
|
| 152 |
model_id2label = ppl.model.config.id2label
|
|
@@ -161,6 +194,7 @@ def check_model_and_show_prediction(
|
|
| 161 |
gr.update(visible=False),
|
| 162 |
gr.update(visible=False),
|
| 163 |
gr.update(visible=False, open=False),
|
|
|
|
| 164 |
*dropdown_placement,
|
| 165 |
)
|
| 166 |
|
|
@@ -168,6 +202,7 @@ def check_model_and_show_prediction(
|
|
| 168 |
ds_labels,
|
| 169 |
ds_features,
|
| 170 |
model_id2label,
|
|
|
|
| 171 |
)
|
| 172 |
|
| 173 |
# when labels or features are not aligned
|
|
@@ -180,6 +215,7 @@ def check_model_and_show_prediction(
|
|
| 180 |
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
| 181 |
gr.update(visible=False),
|
| 182 |
gr.update(visible=True, open=True),
|
|
|
|
| 183 |
*column_mappings,
|
| 184 |
)
|
| 185 |
|
|
@@ -190,13 +226,11 @@ def check_model_and_show_prediction(
|
|
| 190 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
| 191 |
gr.update(value=prediction_output, visible=True),
|
| 192 |
gr.update(visible=True, open=False),
|
|
|
|
| 193 |
*column_mappings,
|
| 194 |
)
|
| 195 |
|
| 196 |
-
|
| 197 |
-
def try_submit(m_id, d_id, config, split, local, uid):
|
| 198 |
-
all_mappings = read_column_mapping(uid)
|
| 199 |
-
|
| 200 |
if all_mappings is None:
|
| 201 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 202 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
@@ -204,6 +238,8 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
| 204 |
if "labels" not in all_mappings.keys():
|
| 205 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 206 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
|
|
|
|
|
| 207 |
label_mapping = {}
|
| 208 |
for i, label in zip(
|
| 209 |
range(len(all_mappings["labels"].keys())), all_mappings["labels"].keys()
|
|
@@ -214,73 +250,88 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
| 214 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 215 |
return (gr.update(interactive=True), gr.update(visible=False))
|
| 216 |
feature_mapping = all_mappings["features"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
leaderboard_dataset = None
|
| 219 |
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
|
| 220 |
leaderboard_dataset = "ZeroCommand/test-giskard-report"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
|
| 283 |
-
else:
|
| 284 |
-
gr.Info("TODO: Submit task to an endpoint")
|
| 285 |
|
| 286 |
-
|
|
|
|
|
|
|
|
|
| 10 |
from wordings import get_styled_input
|
| 11 |
|
| 12 |
from io_utils import (get_yaml_path, read_column_mapping, save_job_to_pipe,
|
| 13 |
+
write_column_mapping,
|
| 14 |
write_log_to_user_file)
|
| 15 |
from text_classification import (check_model, get_example_prediction,
|
| 16 |
get_labels_and_features_from_dataset)
|
|
|
|
| 18 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
| 19 |
MAPPING_STYLED_ERROR_WARNING)
|
| 20 |
|
| 21 |
+
MAX_LABELS = 40
|
| 22 |
MAX_FEATURES = 20
|
| 23 |
|
| 24 |
HF_REPO_ID = "HF_REPO_ID"
|
|
|
|
| 51 |
pass
|
| 52 |
|
| 53 |
|
| 54 |
+
def select_run_mode(run_inf):
|
| 55 |
if run_inf:
|
|
|
|
|
|
|
| 56 |
return (gr.update(visible=True), gr.update(value=False))
|
| 57 |
else:
|
| 58 |
return (gr.update(visible=False), gr.update(value=True))
|
|
|
|
| 66 |
|
| 67 |
|
| 68 |
def write_column_mapping_to_config(
|
| 69 |
+
uid, *labels
|
| 70 |
):
|
| 71 |
# TODO: Substitute 'text' with more features for zero-shot
|
| 72 |
# we are not using ds features because we only support "text" for now
|
| 73 |
+
all_mappings = read_column_mapping(uid)
|
| 74 |
+
|
|
|
|
| 75 |
if labels is None:
|
| 76 |
return
|
| 77 |
+
all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
|
| 78 |
+
all_mappings = export_mappings(all_mappings, "features", ["text"], labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)])
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
write_column_mapping(all_mappings, uid)
|
| 81 |
|
| 82 |
+
def export_mappings(all_mappings, key, subkeys, values):
|
| 83 |
+
if key not in all_mappings.keys():
|
| 84 |
+
all_mappings[key] = dict()
|
| 85 |
+
if subkeys is None:
|
| 86 |
+
subkeys = list(all_mappings[key].keys())
|
| 87 |
+
|
| 88 |
+
if not subkeys:
|
| 89 |
+
logging.debug(f"subkeys is empty for {key}")
|
| 90 |
+
return all_mappings
|
| 91 |
+
|
| 92 |
+
for i, subkey in enumerate(subkeys):
|
| 93 |
+
if subkey:
|
| 94 |
+
all_mappings[key][subkey] = values[i % len(values)]
|
| 95 |
+
return all_mappings
|
| 96 |
+
|
| 97 |
+
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label, uid):
|
| 98 |
model_labels = list(model_id2label.values())
|
| 99 |
+
all_mappings = read_column_mapping(uid)
|
| 100 |
+
# For flattened raw datasets with no labels
|
| 101 |
+
# check if there are shared labels between model and dataset
|
| 102 |
+
shared_labels = set(model_labels).intersection(set(ds_labels))
|
| 103 |
+
if shared_labels:
|
| 104 |
+
ds_labels = list(shared_labels)
|
| 105 |
+
if len(ds_labels) > MAX_LABELS:
|
| 106 |
+
ds_labels = ds_labels[:MAX_LABELS]
|
| 107 |
+
gr.Warning(f"The number of labels is truncated to length {MAX_LABELS}")
|
| 108 |
+
|
| 109 |
+
ds_labels.sort()
|
| 110 |
+
model_labels.sort()
|
| 111 |
+
|
| 112 |
lables = [
|
| 113 |
gr.Dropdown(
|
| 114 |
label=f"{label}",
|
| 115 |
choices=model_labels,
|
| 116 |
+
value=model_id2label[i % len(model_labels)],
|
| 117 |
interactive=True,
|
| 118 |
visible=True,
|
| 119 |
)
|
| 120 |
+
for i, label in enumerate(ds_labels)
|
| 121 |
]
|
| 122 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
| 123 |
+
all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)
|
| 124 |
+
|
| 125 |
# TODO: Substitute 'text' with more features for zero-shot
|
| 126 |
features = [
|
| 127 |
gr.Dropdown(
|
|
|
|
| 136 |
features += [
|
| 137 |
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
|
| 138 |
]
|
| 139 |
+
all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
|
| 140 |
+
write_column_mapping(all_mappings, uid)
|
| 141 |
+
|
| 142 |
return lables + features
|
| 143 |
|
| 144 |
+
def precheck_model_ds_enable_example_btn(model_id, dataset_id, dataset_config, dataset_split):
|
| 145 |
+
ppl = check_model(model_id)
|
| 146 |
+
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
| 147 |
+
gr.Warning("Please check your model.")
|
| 148 |
+
return gr.update(interactive=False)
|
| 149 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
| 150 |
+
dataset_id, dataset_config, dataset_split
|
| 151 |
+
)
|
| 152 |
+
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
| 153 |
+
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
|
| 154 |
+
return gr.update(interactive=False)
|
| 155 |
+
|
| 156 |
+
return gr.update(interactive=True)
|
| 157 |
|
| 158 |
+
def align_columns_and_show_prediction(
|
| 159 |
+
model_id, dataset_id, dataset_config, dataset_split, uid
|
| 160 |
):
|
| 161 |
ppl = check_model(model_id)
|
| 162 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
|
|
|
| 164 |
return (
|
| 165 |
gr.update(visible=False),
|
| 166 |
gr.update(visible=False),
|
| 167 |
+
gr.update(visible=False, open=False),
|
| 168 |
+
gr.update(interactive=False),
|
| 169 |
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
|
| 170 |
)
|
| 171 |
|
|
|
|
| 179 |
gr.update(visible=False),
|
| 180 |
gr.update(visible=False),
|
| 181 |
gr.update(visible=False, open=False),
|
| 182 |
+
gr.update(interactive=False),
|
| 183 |
*dropdown_placement,
|
| 184 |
)
|
| 185 |
model_id2label = ppl.model.config.id2label
|
|
|
|
| 194 |
gr.update(visible=False),
|
| 195 |
gr.update(visible=False),
|
| 196 |
gr.update(visible=False, open=False),
|
| 197 |
+
gr.update(interactive=False),
|
| 198 |
*dropdown_placement,
|
| 199 |
)
|
| 200 |
|
|
|
|
| 202 |
ds_labels,
|
| 203 |
ds_features,
|
| 204 |
model_id2label,
|
| 205 |
+
uid,
|
| 206 |
)
|
| 207 |
|
| 208 |
# when labels or features are not aligned
|
|
|
|
| 215 |
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
| 216 |
gr.update(visible=False),
|
| 217 |
gr.update(visible=True, open=True),
|
| 218 |
+
gr.update(interactive=True),
|
| 219 |
*column_mappings,
|
| 220 |
)
|
| 221 |
|
|
|
|
| 226 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
| 227 |
gr.update(value=prediction_output, visible=True),
|
| 228 |
gr.update(visible=True, open=False),
|
| 229 |
+
gr.update(interactive=True),
|
| 230 |
*column_mappings,
|
| 231 |
)
|
| 232 |
|
| 233 |
+
def check_column_mapping_keys_validity(all_mappings):
|
|
|
|
|
|
|
|
|
|
| 234 |
if all_mappings is None:
|
| 235 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 236 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
|
|
| 238 |
if "labels" not in all_mappings.keys():
|
| 239 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 240 |
return (gr.update(interactive=True), gr.update(visible=False))
|
| 241 |
+
|
| 242 |
+
def construct_label_and_feature_mapping(all_mappings):
|
| 243 |
label_mapping = {}
|
| 244 |
for i, label in zip(
|
| 245 |
range(len(all_mappings["labels"].keys())), all_mappings["labels"].keys()
|
|
|
|
| 250 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 251 |
return (gr.update(interactive=True), gr.update(visible=False))
|
| 252 |
feature_mapping = all_mappings["features"]
|
| 253 |
+
return label_mapping, feature_mapping
|
| 254 |
+
|
| 255 |
+
def try_submit(m_id, d_id, config, split, local, inference, inference_token, uid):
|
| 256 |
+
all_mappings = read_column_mapping(uid)
|
| 257 |
+
check_column_mapping_keys_validity(all_mappings)
|
| 258 |
+
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings)
|
| 259 |
|
| 260 |
leaderboard_dataset = None
|
| 261 |
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
|
| 262 |
leaderboard_dataset = "ZeroCommand/test-giskard-report"
|
| 263 |
+
|
| 264 |
+
if local:
|
| 265 |
+
inference_type = "hf_pipeline"
|
| 266 |
+
if inference and inference_token:
|
| 267 |
+
inference_type = "hf_inference_api"
|
| 268 |
|
| 269 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
| 270 |
+
command = [
|
| 271 |
+
"giskard_scanner",
|
| 272 |
+
"--loader",
|
| 273 |
+
"huggingface",
|
| 274 |
+
"--model",
|
| 275 |
+
m_id,
|
| 276 |
+
"--dataset",
|
| 277 |
+
d_id,
|
| 278 |
+
"--dataset_config",
|
| 279 |
+
config,
|
| 280 |
+
"--dataset_split",
|
| 281 |
+
split,
|
| 282 |
+
"--hf_token",
|
| 283 |
+
os.environ.get(HF_WRITE_TOKEN),
|
| 284 |
+
"--discussion_repo",
|
| 285 |
+
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
| 286 |
+
"--output_format",
|
| 287 |
+
"markdown",
|
| 288 |
+
"--output_portal",
|
| 289 |
+
"huggingface",
|
| 290 |
+
"--feature_mapping",
|
| 291 |
+
json.dumps(feature_mapping),
|
| 292 |
+
"--label_mapping",
|
| 293 |
+
json.dumps(label_mapping),
|
| 294 |
+
"--scan_config",
|
| 295 |
+
get_yaml_path(uid),
|
| 296 |
+
"--leaderboard_dataset",
|
| 297 |
+
leaderboard_dataset,
|
| 298 |
+
"--inference_type",
|
| 299 |
+
inference_type,
|
| 300 |
+
"--inference_token",
|
| 301 |
+
inference_token,
|
| 302 |
+
]
|
| 303 |
+
if os.environ.get(HF_GSK_HUB_KEY):
|
| 304 |
+
command.append("--giskard_hub_api_key")
|
| 305 |
+
command.append(os.environ.get(HF_GSK_HUB_KEY))
|
| 306 |
+
if os.environ.get(HF_GSK_HUB_URL):
|
| 307 |
+
command.append("--giskard_hub_url")
|
| 308 |
+
command.append(os.environ.get(HF_GSK_HUB_URL))
|
| 309 |
+
if os.environ.get(HF_GSK_HUB_PROJECT_KEY):
|
| 310 |
+
command.append("--giskard_hub_project_key")
|
| 311 |
+
command.append(os.environ.get(HF_GSK_HUB_PROJECT_KEY))
|
| 312 |
+
if os.environ.get(HF_GSK_HUB_HF_TOKEN):
|
| 313 |
+
command.append("--giskard_hub_hf_token")
|
| 314 |
+
command.append(os.environ.get(HF_GSK_HUB_HF_TOKEN))
|
| 315 |
+
if os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN):
|
| 316 |
+
command.append("--giskard_hub_unlock_token")
|
| 317 |
+
command.append(os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN))
|
| 318 |
+
|
| 319 |
+
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
| 320 |
+
logging.info(f"Start local evaluation on {eval_str}")
|
| 321 |
+
save_job_to_pipe(uid, command, eval_str, threading.Lock())
|
| 322 |
+
print(command)
|
| 323 |
+
write_log_to_user_file(
|
| 324 |
+
uid,
|
| 325 |
+
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
|
| 326 |
+
)
|
| 327 |
+
gr.Info(f"Start local evaluation on {eval_str}")
|
| 328 |
|
| 329 |
+
return (
|
| 330 |
+
gr.update(interactive=False),
|
| 331 |
+
gr.update(lines=5, visible=True, interactive=False),
|
| 332 |
+
)
|
| 333 |
|
|
|
|
|
|
|
| 334 |
|
| 335 |
+
# TODO: Submit task to an endpoint")
|
| 336 |
+
|
| 337 |
+
# return (gr.update(interactive=True), gr.update(visible=False)) # Submit button
|