Spaces:
Running
Running
Commit
·
77961b6
1
Parent(s):
85095eb
Move text classification column mapping
Browse files- app.py +2 -110
- text_classification.py +112 -0
app.py
CHANGED
|
@@ -7,12 +7,11 @@ import time
|
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
import json
|
| 10 |
-
import logging
|
| 11 |
-
|
| 12 |
-
import pandas as pd
|
| 13 |
|
| 14 |
from transformers.pipelines import TextClassificationPipeline
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
| 17 |
HF_REPO_ID = 'HF_REPO_ID'
|
| 18 |
HF_SPACE_ID = 'SPACE_ID'
|
|
@@ -61,113 +60,6 @@ def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
|
| 61 |
return dataset_id, dataset_config, dataset_split
|
| 62 |
|
| 63 |
|
| 64 |
-
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
| 65 |
-
for model_label in id2label_mapping.keys():
|
| 66 |
-
if model_label.upper() == label.upper():
|
| 67 |
-
return model_label, label
|
| 68 |
-
return None, label
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
| 72 |
-
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
| 73 |
-
dataset_labels = None
|
| 74 |
-
for feature in dataset_features.values():
|
| 75 |
-
if not isinstance(feature, datasets.ClassLabel):
|
| 76 |
-
continue
|
| 77 |
-
if len(feature.names) != len(id2label_mapping.keys()):
|
| 78 |
-
continue
|
| 79 |
-
|
| 80 |
-
dataset_labels = feature.names
|
| 81 |
-
|
| 82 |
-
# Try to match labels
|
| 83 |
-
for label in feature.names:
|
| 84 |
-
if label in id2label_mapping.keys():
|
| 85 |
-
model_label = label
|
| 86 |
-
else:
|
| 87 |
-
# Try to find case unsensative
|
| 88 |
-
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
| 89 |
-
if model_label is not None:
|
| 90 |
-
id2label_mapping[model_label] = label
|
| 91 |
-
|
| 92 |
-
return id2label_mapping, dataset_labels
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
| 96 |
-
# We assume dataset is ok here
|
| 97 |
-
ds = datasets.load_dataset(d_id, config)[split]
|
| 98 |
-
|
| 99 |
-
try:
|
| 100 |
-
dataset_features = ds.features
|
| 101 |
-
except AttributeError:
|
| 102 |
-
# Dataset does not have features, need to provide everything
|
| 103 |
-
return None, None, None
|
| 104 |
-
|
| 105 |
-
# Check whether we need to infer the text input column
|
| 106 |
-
infer_text_input_column = True
|
| 107 |
-
if "text" in column_mapping.keys():
|
| 108 |
-
dataset_text_column = column_mapping["text"]
|
| 109 |
-
if dataset_text_column in dataset_features.keys():
|
| 110 |
-
infer_text_input_column = False
|
| 111 |
-
else:
|
| 112 |
-
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
|
| 113 |
-
|
| 114 |
-
if infer_text_input_column:
|
| 115 |
-
# Try to retrieve one
|
| 116 |
-
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
| 117 |
-
if len(candidates) > 0:
|
| 118 |
-
logging.debug(f"Candidates are {candidates}")
|
| 119 |
-
column_mapping["text"] = candidates[0]
|
| 120 |
-
else:
|
| 121 |
-
# Not found a text feature
|
| 122 |
-
return column_mapping, None, None
|
| 123 |
-
|
| 124 |
-
# Load dataset as DataFrame
|
| 125 |
-
df = ds.to_pandas()
|
| 126 |
-
|
| 127 |
-
# Retrieve all labels
|
| 128 |
-
id2label_mapping = {}
|
| 129 |
-
id2label = ppl.model.config.id2label
|
| 130 |
-
label2id = {v: k for k, v in id2label.items()}
|
| 131 |
-
prediction_result = None
|
| 132 |
-
try:
|
| 133 |
-
# Use the first item to test prediction
|
| 134 |
-
results = ppl({"text": df.head(1).at[0, column_mapping["text"]]}, top_k=None)
|
| 135 |
-
prediction_result = {
|
| 136 |
-
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
| 137 |
-
}
|
| 138 |
-
except Exception:
|
| 139 |
-
# Pipeline prediction failed, need to provide labels
|
| 140 |
-
return column_mapping, None, None
|
| 141 |
-
|
| 142 |
-
# Infer labels
|
| 143 |
-
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
| 144 |
-
if "label" in column_mapping.keys():
|
| 145 |
-
if not isinstance(column_mapping["label"], dict) or set(column_mapping["label"].values()) != set(dataset_labels):
|
| 146 |
-
logging.warning(f'Provided {column_mapping["label"]} does not match labels in Dataset')
|
| 147 |
-
return column_mapping, prediction_result, None
|
| 148 |
-
|
| 149 |
-
if isinstance(column_mapping["label"], dict):
|
| 150 |
-
for model_label in id2label_mapping.keys():
|
| 151 |
-
id2label_mapping[model_label] = column_mapping["label"][str(label2id[model_label])]
|
| 152 |
-
elif None in id2label_mapping.values():
|
| 153 |
-
column_mapping["label"] = {
|
| 154 |
-
i: None for i in id2label.keys()
|
| 155 |
-
}
|
| 156 |
-
return column_mapping, prediction_result, None
|
| 157 |
-
|
| 158 |
-
id2label_df = pd.DataFrame({
|
| 159 |
-
"ID": [i for i in id2label.keys()],
|
| 160 |
-
"Model labels": [id2label[label] for label in id2label.keys()],
|
| 161 |
-
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
|
| 162 |
-
})
|
| 163 |
-
if "label" not in column_mapping.keys():
|
| 164 |
-
column_mapping["label"] = {
|
| 165 |
-
i: id2label_mapping[id2label[i]] for i in id2label.keys()
|
| 166 |
-
}
|
| 167 |
-
|
| 168 |
-
return column_mapping, prediction_result, id2label_df
|
| 169 |
-
|
| 170 |
-
|
| 171 |
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
|
| 172 |
# Validate model
|
| 173 |
m_id, ppl = check_model(model_id=model_id)
|
|
|
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
import json
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
from transformers.pipelines import TextClassificationPipeline
|
| 12 |
|
| 13 |
+
from text_classification import text_classification_fix_column_mapping
|
| 14 |
+
|
| 15 |
|
| 16 |
HF_REPO_ID = 'HF_REPO_ID'
|
| 17 |
HF_SPACE_ID = 'SPACE_ID'
|
|
|
|
| 60 |
return dataset_id, dataset_config, dataset_split
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
|
| 64 |
# Validate model
|
| 65 |
m_id, ppl = check_model(model_id=model_id)
|
text_classification.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
| 9 |
+
for model_label in id2label_mapping.keys():
|
| 10 |
+
if model_label.upper() == label.upper():
|
| 11 |
+
return model_label, label
|
| 12 |
+
return None, label
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
| 16 |
+
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
| 17 |
+
dataset_labels = None
|
| 18 |
+
for feature in dataset_features.values():
|
| 19 |
+
if not isinstance(feature, datasets.ClassLabel):
|
| 20 |
+
continue
|
| 21 |
+
if len(feature.names) != len(id2label_mapping.keys()):
|
| 22 |
+
continue
|
| 23 |
+
|
| 24 |
+
dataset_labels = feature.names
|
| 25 |
+
|
| 26 |
+
# Try to match labels
|
| 27 |
+
for label in feature.names:
|
| 28 |
+
if label in id2label_mapping.keys():
|
| 29 |
+
model_label = label
|
| 30 |
+
else:
|
| 31 |
+
# Try to find case unsensative
|
| 32 |
+
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
| 33 |
+
if model_label is not None:
|
| 34 |
+
id2label_mapping[model_label] = label
|
| 35 |
+
|
| 36 |
+
return id2label_mapping, dataset_labels
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
| 40 |
+
# We assume dataset is ok here
|
| 41 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
dataset_features = ds.features
|
| 45 |
+
except AttributeError:
|
| 46 |
+
# Dataset does not have features, need to provide everything
|
| 47 |
+
return None, None, None
|
| 48 |
+
|
| 49 |
+
# Check whether we need to infer the text input column
|
| 50 |
+
infer_text_input_column = True
|
| 51 |
+
if "text" in column_mapping.keys():
|
| 52 |
+
dataset_text_column = column_mapping["text"]
|
| 53 |
+
if dataset_text_column in dataset_features.keys():
|
| 54 |
+
infer_text_input_column = False
|
| 55 |
+
else:
|
| 56 |
+
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
|
| 57 |
+
|
| 58 |
+
if infer_text_input_column:
|
| 59 |
+
# Try to retrieve one
|
| 60 |
+
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
| 61 |
+
if len(candidates) > 0:
|
| 62 |
+
logging.debug(f"Candidates are {candidates}")
|
| 63 |
+
column_mapping["text"] = candidates[0]
|
| 64 |
+
else:
|
| 65 |
+
# Not found a text feature
|
| 66 |
+
return column_mapping, None, None
|
| 67 |
+
|
| 68 |
+
# Load dataset as DataFrame
|
| 69 |
+
df = ds.to_pandas()
|
| 70 |
+
|
| 71 |
+
# Retrieve all labels
|
| 72 |
+
id2label_mapping = {}
|
| 73 |
+
id2label = ppl.model.config.id2label
|
| 74 |
+
label2id = {v: k for k, v in id2label.items()}
|
| 75 |
+
prediction_result = None
|
| 76 |
+
try:
|
| 77 |
+
# Use the first item to test prediction
|
| 78 |
+
results = ppl({"text": df.head(1).at[0, column_mapping["text"]]}, top_k=None)
|
| 79 |
+
prediction_result = {
|
| 80 |
+
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
| 81 |
+
}
|
| 82 |
+
except Exception:
|
| 83 |
+
# Pipeline prediction failed, need to provide labels
|
| 84 |
+
return column_mapping, None, None
|
| 85 |
+
|
| 86 |
+
# Infer labels
|
| 87 |
+
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
| 88 |
+
if "label" in column_mapping.keys():
|
| 89 |
+
if not isinstance(column_mapping["label"], dict) or set(column_mapping["label"].values()) != set(dataset_labels):
|
| 90 |
+
logging.warning(f'Provided {column_mapping["label"]} does not match labels in Dataset')
|
| 91 |
+
return column_mapping, prediction_result, None
|
| 92 |
+
|
| 93 |
+
if isinstance(column_mapping["label"], dict):
|
| 94 |
+
for model_label in id2label_mapping.keys():
|
| 95 |
+
id2label_mapping[model_label] = column_mapping["label"][str(label2id[model_label])]
|
| 96 |
+
elif None in id2label_mapping.values():
|
| 97 |
+
column_mapping["label"] = {
|
| 98 |
+
i: None for i in id2label.keys()
|
| 99 |
+
}
|
| 100 |
+
return column_mapping, prediction_result, None
|
| 101 |
+
|
| 102 |
+
id2label_df = pd.DataFrame({
|
| 103 |
+
"ID": [i for i in id2label.keys()],
|
| 104 |
+
"Model labels": [id2label[label] for label in id2label.keys()],
|
| 105 |
+
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
|
| 106 |
+
})
|
| 107 |
+
if "label" not in column_mapping.keys():
|
| 108 |
+
column_mapping["label"] = {
|
| 109 |
+
i: id2label_mapping[id2label[i]] for i in id2label.keys()
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
return column_mapping, prediction_result, id2label_df
|