gmshroff commited on
Commit
ceb0714
1 Parent(s): b34524e

implemented background service for async launching of registered (in app) library functions

Browse files
Files changed (5) hide show
  1. .gitignore +2 -0
  2. app.py +36 -6
  3. background_service.ipynb +84 -0
  4. library.ipynb +75 -0
  5. test.ipynb +169 -1
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ test.ipynb
2
+ allkeys.py
app.py CHANGED
@@ -5,6 +5,9 @@ import anvil.server
5
  import pathlib
6
  import textwrap
7
  import google.generativeai as genai
 
 
 
8
 
9
  anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')
10
 
@@ -15,14 +18,41 @@ MESSAGED={'title':'API Server',
15
  tokenizer = AutoTokenizer.from_pretrained('allenai/specter')
16
  encoder = AutoModel.from_pretrained('allenai/specter')
17
 
18
- GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
19
- genai.configure(api_key=GOOGLE_API_KEY)
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  @anvil.server.callable
22
- def call_gemini(text):
23
- model = genai.GenerativeModel('gemini-pro')
24
- response = model.generate_content(text)
25
- return response.text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  @anvil.server.callable
28
  def encode_anvil(text):
 
5
  import pathlib
6
  import textwrap
7
  import google.generativeai as genai
8
+ import import_ipynb
9
+ from library import call_gpt, call_gemini
10
+ from background_service import BackgroundTaskService
11
 
12
  anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')
13
 
 
18
  tokenizer = AutoTokenizer.from_pretrained('allenai/specter')
19
  encoder = AutoModel.from_pretrained('allenai/specter')
20
 
21
+ # GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
22
+ # genai.configure(api_key=GOOGLE_API_KEY)
23
+
24
+ service=BackgroundTaskService(max_tasks=10)
25
+ service.register(call_gpt)
26
+ service.register(call_gemini)
27
+
28
+ @anvil.server.callable
29
+ def launch(func_name,*args):
30
+ global service
31
+ # Launch task
32
+ task_id = service.launch_task(func_name, *args)
33
+ print(f"Task launched with ID: {task_id}")
34
+ return task_id
35
 
36
  @anvil.server.callable
37
+ def poll(task_id):
38
+ global service
39
+ # Poll for completion; if not complete return "In Progress" else return result
40
+ result = service.get_result(task_id)
41
+ if result=='No such task': return str(result)
42
+ elif result!='In Progress':
43
+ del service.results[task_id]
44
+ if isinstance(result, (int, float, str, list, dict, tuple)):
45
+ return result
46
+ else:
47
+ print(str(result))
48
+ return str(result)
49
+ else: return str(result)
50
+
51
+ # @anvil.server.callable
52
+ # def call_gemini(text):
53
+ # model = genai.GenerativeModel('gemini-pro')
54
+ # response = model.generate_content(text)
55
+ # return response.text
56
 
57
  @anvil.server.callable
58
  def encode_anvil(text):
background_service.ipynb ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import threading\n",
10
+ "import queue\n",
11
+ "import secrets\n",
12
+ "import concurrent.futures\n",
13
+ "from typing import Callable, Any, Dict"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 2,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "class BackgroundTaskService:\n",
23
+ " def __init__(self, max_tasks: int):\n",
24
+ " self.max_tasks = max_tasks\n",
25
+ " self.task_queue = queue.Queue()\n",
26
+ " self.results = {}\n",
27
+ " self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=max_tasks)\n",
28
+ " self.lock = threading.Lock() # To handle concurrent access to results dictionary\n",
29
+ " threading.Thread(target=self._worker, daemon=True).start()\n",
30
+ " self.registry={}\n",
31
+ " def register(self,func):\n",
32
+ " self.registry[func.__name__]=func\n",
33
+ " def _worker(self):\n",
34
+ " while True:\n",
35
+ " task_id, func, args = self.task_queue.get()\n",
36
+ " result = self.executor.submit(func, *args).result()\n",
37
+ " with self.lock:\n",
38
+ " self.results[task_id] = result\n",
39
+ "\n",
40
+ " def launch_task(self, func_name, *args) -> Any:\n",
41
+ " func=self.registry[func_name]\n",
42
+ " if self.task_queue.qsize() >= self.max_tasks:\n",
43
+ " return \"Queue Full\"\n",
44
+ " task_id = secrets.token_hex(16)\n",
45
+ " self.task_queue.put((task_id, func, args))\n",
46
+ " with self.lock:\n",
47
+ " self.results[task_id] = \"In Progress\"\n",
48
+ " return task_id\n",
49
+ "\n",
50
+ " def get_result(self, task_id) -> Any:\n",
51
+ " with self.lock:\n",
52
+ " return self.results.get(task_id, \"No such task\")"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": []
61
+ }
62
+ ],
63
+ "metadata": {
64
+ "kernelspec": {
65
+ "display_name": "py310all",
66
+ "language": "python",
67
+ "name": "python3"
68
+ },
69
+ "language_info": {
70
+ "codemirror_mode": {
71
+ "name": "ipython",
72
+ "version": 3
73
+ },
74
+ "file_extension": ".py",
75
+ "mimetype": "text/x-python",
76
+ "name": "python",
77
+ "nbconvert_exporter": "python",
78
+ "pygments_lexer": "ipython3",
79
+ "version": "3.10.13"
80
+ }
81
+ },
82
+ "nbformat": 4,
83
+ "nbformat_minor": 2
84
+ }
library.ipynb ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import anvil.server\n",
10
+ "import openai\n",
11
+ "import pathlib\n",
12
+ "import textwrap\n",
13
+ "import google.generativeai as genai"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "def call_gemini(text,key):\n",
23
+ " # response=f'calling gemini with key {key} and text {text}'\n",
24
+ " # return response\n",
25
+ " genai.configure(api_key=key)\n",
26
+ " model = genai.GenerativeModel('gemini-pro')\n",
27
+ " response = model.generate_content(text)\n",
28
+ " return response.text"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": 3,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "def call_gpt(prompt,key,model):\n",
38
+ " openai.api_key=key\n",
39
+ " try:\n",
40
+ " messages=[{\"role\": \"system\", \"content\": \"You are a helpful assistant.\"}]\n",
41
+ " messages+=[{\"role\": \"user\", \"content\": prompt}]\n",
42
+ " completions=openai.chat.completions.create( #for new version >.28 ) \n",
43
+ " # completions=openai.ChatCompletion.create(\n",
44
+ " model=model, \n",
45
+ " messages=messages)\n",
46
+ " # prediction=completions['choices'][0]['message']['content']\n",
47
+ " prediction=completions.choices[0].message.content.strip() # for new version >.28\n",
48
+ " except Exception as e:\n",
49
+ " return -1,str(e)\n",
50
+ " return 0,prediction"
51
+ ]
52
+ }
53
+ ],
54
+ "metadata": {
55
+ "kernelspec": {
56
+ "display_name": "py310all",
57
+ "language": "python",
58
+ "name": "python3"
59
+ },
60
+ "language_info": {
61
+ "codemirror_mode": {
62
+ "name": "ipython",
63
+ "version": 3
64
+ },
65
+ "file_extension": ".py",
66
+ "mimetype": "text/x-python",
67
+ "name": "python",
68
+ "nbconvert_exporter": "python",
69
+ "pygments_lexer": "ipython3",
70
+ "version": "3.10.13"
71
+ }
72
+ },
73
+ "nbformat": 4,
74
+ "nbformat_minor": 2
75
+ }
test.ipynb CHANGED
@@ -11,7 +11,9 @@
11
  "import requests\n",
12
  "import json\n",
13
  "from urllib.request import urlretrieve\n",
14
- "import pandas as pd"
 
 
15
  ]
16
  },
17
  {
@@ -24,6 +26,130 @@
24
  "anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')"
25
  ]
26
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  {
28
  "cell_type": "code",
29
  "execution_count": null,
@@ -173,6 +299,48 @@
173
  "source": [
174
  "df=pd.read_parquet('/tmp/validation_subset_int8.parquet')"
175
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  }
177
  ],
178
  "metadata": {
 
11
  "import requests\n",
12
  "import json\n",
13
  "from urllib.request import urlretrieve\n",
14
+ "import pandas as pd\n",
15
+ "import time\n",
16
+ "from allkeys import OPENAIKEY, GEMENIKEY"
17
  ]
18
  },
19
  {
 
26
  "anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')"
27
  ]
28
  },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "def fetch_result(task_id):\n",
36
+ " while True:\n",
37
+ " result=anvil.server.call('poll',task_id)\n",
38
+ " if result!='In Progress' or result=='No such task': break\n",
39
+ " else: \n",
40
+ " time.sleep(1)\n",
41
+ " print(result)\n",
42
+ " print(result)\n",
43
+ " return result"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "text='write a python function to compute the nth digit of pi'\n",
53
+ "model='gpt-3.5-turbo'"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "task_id=anvil.server.call('launch','call_gemini',text,GEMENIKEY)"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "task_id=anvil.server.call('launch','call_gpt',text,OPENAIKEY,model)"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {},
78
+ "outputs": [],
79
+ "source": [
80
+ "fetch_result(task_id)"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": null,
86
+ "metadata": {},
87
+ "outputs": [],
88
+ "source": [
89
+ "print(result)"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "code",
94
+ "execution_count": null,
95
+ "metadata": {},
96
+ "outputs": [],
97
+ "source": [
98
+ "print(result[1],end='\\n')"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": null,
104
+ "metadata": {},
105
+ "outputs": [],
106
+ "source": [
107
+ "import pathlib\n",
108
+ "import textwrap\n",
109
+ "from IPython.display import display\n",
110
+ "from IPython.display import Markdown\n",
111
+ "\n",
112
+ "def to_markdown(text):\n",
113
+ " text = text.replace('•', ' *')\n",
114
+ " return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "prompt='write code that defines a transformer network from scratch in pytorch'"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": null,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "response=anvil.server.call('call_gemini',prompt)"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": null,
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "anvil.server.call('encode_anvil',prompt)"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": null,
147
+ "metadata": {},
148
+ "outputs": [],
149
+ "source": [
150
+ "to_markdown(response)"
151
+ ]
152
+ },
153
  {
154
  "cell_type": "code",
155
  "execution_count": null,
 
299
  "source": [
300
  "df=pd.read_parquet('/tmp/validation_subset_int8.parquet')"
301
  ]
302
+ },
303
+ {
304
+ "cell_type": "code",
305
+ "execution_count": null,
306
+ "metadata": {},
307
+ "outputs": [],
308
+ "source": [
309
+ "import torch\n",
310
+ "import torch.nn as nn\n",
311
+ "import torch.nn.functional as F\n",
312
+ "\n",
313
+ "class Transformer(nn.Module):\n",
314
+ " def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):\n",
315
+ " super(Transformer, self).__init__()\n",
316
+ " self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)\n",
317
+ "\n",
318
+ " def forward(self, src, tgt):\n",
319
+ " output = self.transformer(src, tgt)\n",
320
+ " return output\n",
321
+ "\n",
322
+ "# Example usage:\n",
323
+ "# Define the model parameters\n",
324
+ "d_model = 512\n",
325
+ "nhead = 8\n",
326
+ "num_encoder_layers = 6\n",
327
+ "num_decoder_layers = 6\n",
328
+ "dim_feedforward = 2048\n",
329
+ "dropout = 0.1\n",
330
+ "\n",
331
+ "# Initialize the model\n",
332
+ "model = Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)\n",
333
+ "\n",
334
+ "# Generate some sample data\n",
335
+ "src = torch.rand(10, 32, 512)\n",
336
+ "tgt = torch.rand(20, 32, 512)\n",
337
+ "\n",
338
+ "# Pass the data through the model\n",
339
+ "output = model(src, tgt)\n",
340
+ "\n",
341
+ "# Print the output shape\n",
342
+ "print(output.shape)"
343
+ ]
344
  }
345
  ],
346
  "metadata": {