Spaces:
Running
Running
chore: auth and logging
Browse files
app.py
CHANGED
@@ -2,13 +2,26 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class MedGemmaSymptomAnalyzer:
|
7 |
def __init__(self):
|
8 |
self.model = None
|
9 |
self.tokenizer = None
|
10 |
self.model_loaded = False
|
11 |
-
|
12 |
|
13 |
def load_model(self):
|
14 |
"""Load MedGemma model with optimizations for deployment"""
|
@@ -16,32 +29,43 @@ class MedGemmaSymptomAnalyzer:
|
|
16 |
return True
|
17 |
|
18 |
model_name = "google/medgemma-4b-it"
|
19 |
-
|
20 |
|
21 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# First try without quantization for CPU compatibility
|
23 |
-
|
24 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
# Simplified loading for CPU/compatibility
|
28 |
self.model = AutoModelForCausalLM.from_pretrained(
|
29 |
model_name,
|
30 |
torch_dtype=torch.float32, # Use float32 for CPU
|
31 |
device_map="cpu", # Force CPU for compatibility
|
32 |
-
low_cpu_mem_usage=True
|
|
|
33 |
)
|
34 |
|
35 |
if self.tokenizer.pad_token is None:
|
36 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
37 |
|
38 |
self.model_loaded = True
|
39 |
-
|
40 |
return True
|
41 |
|
42 |
except Exception as e:
|
43 |
-
|
44 |
-
|
45 |
self.model = None
|
46 |
self.tokenizer = None
|
47 |
self.model_loaded = False
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
import re
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Configure logging
|
9 |
+
logging.basicConfig(
|
10 |
+
level=logging.INFO,
|
11 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
12 |
+
handlers=[
|
13 |
+
logging.StreamHandler(),
|
14 |
+
logging.FileHandler('medgemma_app.log')
|
15 |
+
]
|
16 |
+
)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
|
19 |
class MedGemmaSymptomAnalyzer:
|
20 |
def __init__(self):
|
21 |
self.model = None
|
22 |
self.tokenizer = None
|
23 |
self.model_loaded = False
|
24 |
+
logger.info("Initializing MedGemma Symptom Analyzer...")
|
25 |
|
26 |
def load_model(self):
|
27 |
"""Load MedGemma model with optimizations for deployment"""
|
|
|
29 |
return True
|
30 |
|
31 |
model_name = "google/medgemma-4b-it"
|
32 |
+
logger.info(f"Loading model: {model_name}")
|
33 |
|
34 |
try:
|
35 |
+
# Get HF token from environment (set in Hugging Face Spaces secrets)
|
36 |
+
hf_token = os.getenv("HF_TOKEN")
|
37 |
+
if hf_token:
|
38 |
+
logger.info("Using HF_TOKEN for authentication")
|
39 |
+
else:
|
40 |
+
logger.warning("HF_TOKEN not found in environment variables")
|
41 |
+
|
42 |
# First try without quantization for CPU compatibility
|
43 |
+
logger.info("Loading tokenizer...")
|
44 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
45 |
+
model_name,
|
46 |
+
token=hf_token
|
47 |
+
)
|
48 |
|
49 |
+
logger.info("Loading model...")
|
50 |
# Simplified loading for CPU/compatibility
|
51 |
self.model = AutoModelForCausalLM.from_pretrained(
|
52 |
model_name,
|
53 |
torch_dtype=torch.float32, # Use float32 for CPU
|
54 |
device_map="cpu", # Force CPU for compatibility
|
55 |
+
low_cpu_mem_usage=True,
|
56 |
+
token=hf_token
|
57 |
)
|
58 |
|
59 |
if self.tokenizer.pad_token is None:
|
60 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
61 |
|
62 |
self.model_loaded = True
|
63 |
+
logger.info("Model loaded successfully!")
|
64 |
return True
|
65 |
|
66 |
except Exception as e:
|
67 |
+
logger.error(f"Failed to load model {model_name}: {str(e)}", exc_info=True)
|
68 |
+
logger.warning("Falling back to demo mode due to model loading failure")
|
69 |
self.model = None
|
70 |
self.tokenizer = None
|
71 |
self.model_loaded = False
|