Spaces:
Sleeping
Sleeping
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch | |
| class RNN(nn.Module): | |
| def __init__(self, input_size, hidden_size, output_size): | |
| super(RNN, self).__init__() | |
| self.hidden_size = hidden_size | |
| self.i2h = nn.Linear(input_size, hidden_size) | |
| self.h2h = nn.Linear(hidden_size, hidden_size) | |
| self.h2o = nn.Linear(hidden_size, output_size) | |
| self.softmax = nn.LogSoftmax(dim=1) | |
| def forward(self, input, hidden): | |
| hidden = F.tanh(self.i2h(input) + self.h2h(hidden)) | |
| output = self.h2o(hidden) | |
| output = self.softmax(output) | |
| return output, hidden | |
| def initHidden(self): | |
| return torch.zeros(1, self.hidden_size) | |