Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,38 +31,39 @@ def neighbours(i, j, max_i, max_j):
|
|
| 31 |
|
| 32 |
def poisson_blend(img_s, mask, img_t):
|
| 33 |
img_s_h, img_s_w = img_s.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
A[e, im2var[n_y][n_x]] = -1
|
| 54 |
-
else:
|
| 55 |
-
b[e] += img_t[n_y][n_x]
|
| 56 |
-
e += 1
|
| 57 |
-
|
| 58 |
-
A = sp.sparse.csr_matrix(A)
|
| 59 |
v = sp.sparse.linalg.lsqr(A, b)[0]
|
| 60 |
|
|
|
|
| 61 |
img_t_out = img_t.copy()
|
| 62 |
-
|
| 63 |
-
for n in range(nnz):
|
| 64 |
-
y, x = ys[n], xs[n]
|
| 65 |
-
img_t_out[y][x] = v[im2var[y][x]]
|
| 66 |
|
| 67 |
return np.clip(img_t_out, 0, 1)
|
| 68 |
|
|
@@ -108,62 +109,61 @@ def mixed_blend(img_s, mask, img_t):
|
|
| 108 |
|
| 109 |
return np.clip(img_t_out, 0, 1)
|
| 110 |
|
| 111 |
-
def _2d_gaussian(sigma):
|
| 112 |
-
ksize = np.int(np.ceil(sigma)*6+1)
|
| 113 |
-
gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
|
| 114 |
-
return gaussian_1d * np.transpose(gaussian_1d)
|
| 115 |
-
|
| 116 |
-
def _low_pass_filter(img, sigma):
|
| 117 |
-
return cv2.filter2D(img, -1, _2d_gaussian(sigma))
|
| 118 |
-
|
| 119 |
-
def _high_pass_filter(img, sigma):
|
| 120 |
-
return img - _low_pass_filter(img, sigma)
|
| 121 |
-
|
| 122 |
-
def _gaus_pyramid(img, depth, sigma):
|
| 123 |
-
_im = img.copy()
|
| 124 |
-
pyramid = []
|
| 125 |
-
for d in range(depth-1):
|
| 126 |
-
_im = _low_pass_filter(_im.copy(), sigma)
|
| 127 |
-
pyramid.append(_im)
|
| 128 |
-
_im = cv2.pyrDown(_im)
|
| 129 |
-
return pyramid
|
| 130 |
-
|
| 131 |
-
def _lap_pyramid(img, depth, sigma):
|
| 132 |
-
_im = img.copy()
|
| 133 |
-
pyramid = []
|
| 134 |
-
for d in range(depth-1):
|
| 135 |
-
lap = _high_pass_filter(_im.copy(), sigma)
|
| 136 |
-
pyramid.append(lap)
|
| 137 |
-
_im = cv2.pyrDown(_im)
|
| 138 |
-
return pyramid
|
| 139 |
-
|
| 140 |
-
def _blend(img1, img2, mask):
|
| 141 |
-
return img1 * mask + img2 * (1.0 - mask)
|
| 142 |
-
|
| 143 |
def laplacian_blend(img1, img2, mask, depth=5, sigma=25):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
|
| 145 |
-
img1_lap_pyramid, img2_lap_pyramid = _lap_pyramid(img1, depth, sigma), _lap_pyramid(img2, depth, sigma)
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
img1 = cv2.resize(img1, (w, h))
|
| 152 |
-
img2 = cv2.resize(img2, (w, h))
|
| 153 |
-
mask = cv2.resize(mask, (w, h))
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
return np.clip(
|
| 167 |
|
| 168 |
def load_example_images(bg_path, obj_path, mask_path):
|
| 169 |
bg_img = cv2.imread(bg_path)
|
|
|
|
| 31 |
|
| 32 |
def poisson_blend(img_s, mask, img_t):
|
| 33 |
img_s_h, img_s_w = img_s.shape
|
| 34 |
+
nnz = np.sum(mask > 0)
|
| 35 |
+
im2var = np.full(mask.shape, -1, dtype='int32')
|
| 36 |
+
im2var[mask > 0] = np.arange(nnz)
|
| 37 |
+
|
| 38 |
+
ys, xs = np.where(mask == 1)
|
| 39 |
+
|
| 40 |
+
# Precompute neighbor indices
|
| 41 |
+
y_n = np.clip(np.stack([ys-1, ys+1, ys, ys]), 0, img_s_h-1)
|
| 42 |
+
x_n = np.clip(np.stack([xs, xs, xs-1, xs+1]), 0, img_s_w-1)
|
| 43 |
|
| 44 |
+
# Compute differences
|
| 45 |
+
d = img_s[ys, xs][:, np.newaxis] - img_s[y_n, x_n]
|
| 46 |
+
|
| 47 |
+
# Construct sparse matrix A and vector b
|
| 48 |
+
rows = np.repeat(np.arange(4*nnz), 2)
|
| 49 |
+
cols = np.column_stack([np.repeat(im2var[ys, xs], 4), im2var[y_n, x_n].ravel()])
|
| 50 |
+
data = np.column_stack([np.ones(4*nnz), -np.ones(4*nnz)]).ravel()
|
| 51 |
+
|
| 52 |
+
mask_n = (im2var[y_n, x_n] != -1).ravel()
|
| 53 |
+
rows = rows[mask_n]
|
| 54 |
+
cols = cols[mask_n]
|
| 55 |
+
data = data[mask_n]
|
| 56 |
+
|
| 57 |
+
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
|
| 58 |
+
b = d.ravel()
|
| 59 |
+
b[~mask_n] += img_t[y_n, x_n].ravel()[~mask_n]
|
| 60 |
+
|
| 61 |
+
# Solve the system
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
v = sp.sparse.linalg.lsqr(A, b)[0]
|
| 63 |
|
| 64 |
+
# Update the target image
|
| 65 |
img_t_out = img_t.copy()
|
| 66 |
+
img_t_out[ys, xs] = v
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
return np.clip(img_t_out, 0, 1)
|
| 69 |
|
|
|
|
| 109 |
|
| 110 |
return np.clip(img_t_out, 0, 1)
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
def laplacian_blend(img1, img2, mask, depth=5, sigma=25):
|
| 113 |
+
def _2d_gaussian(sigma):
|
| 114 |
+
ksize = int(np.ceil(sigma) * 6 + 1)
|
| 115 |
+
gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
|
| 116 |
+
return gaussian_1d @ gaussian_1d.T
|
| 117 |
+
|
| 118 |
+
def _low_pass_filter(img, sigma):
|
| 119 |
+
return cv2.filter2D(img, -1, _2d_gaussian(sigma))
|
| 120 |
+
|
| 121 |
+
def _high_pass_filter(img, sigma):
|
| 122 |
+
return img - _low_pass_filter(img, sigma)
|
| 123 |
+
|
| 124 |
+
def _gaus_pyramid(img, depth, sigma):
|
| 125 |
+
pyramid = [img]
|
| 126 |
+
for _ in range(depth - 1):
|
| 127 |
+
img = _low_pass_filter(cv2.pyrDown(img), sigma)
|
| 128 |
+
pyramid.append(img)
|
| 129 |
+
return pyramid
|
| 130 |
+
|
| 131 |
+
def _lap_pyramid(img, depth, sigma):
|
| 132 |
+
pyramid = []
|
| 133 |
+
for d in range(depth - 1):
|
| 134 |
+
next_img = cv2.pyrDown(img)
|
| 135 |
+
lap = img - cv2.pyrUp(next_img, dstsize=img.shape[:2])
|
| 136 |
+
pyramid.append(lap)
|
| 137 |
+
img = next_img
|
| 138 |
+
pyramid.append(img)
|
| 139 |
+
return pyramid
|
| 140 |
+
|
| 141 |
+
def _blend(img1, img2, mask):
|
| 142 |
+
return img1 * mask + img2 * (1.0 - mask)
|
| 143 |
+
|
| 144 |
+
# Ensure mask is 3D
|
| 145 |
+
if mask.ndim == 2:
|
| 146 |
+
mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
|
| 147 |
+
|
| 148 |
+
# Create Gaussian pyramid for mask
|
| 149 |
mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
|
|
|
|
| 150 |
|
| 151 |
+
# Create Laplacian pyramids for images
|
| 152 |
+
img1_lap_pyramid = _lap_pyramid(img1, depth, sigma)
|
| 153 |
+
img2_lap_pyramid = _lap_pyramid(img2, depth, sigma)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
# Blend pyramids
|
| 156 |
+
blended_pyramid = [_blend(img1_lap, img2_lap, mask_gaus)
|
| 157 |
+
for img1_lap, img2_lap, mask_gaus
|
| 158 |
+
in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)]
|
| 159 |
+
|
| 160 |
+
# Reconstruct image
|
| 161 |
+
blended_img = blended_pyramid[-1]
|
| 162 |
+
for lap in reversed(blended_pyramid[:-1]):
|
| 163 |
+
blended_img = cv2.pyrUp(blended_img, dstsize=lap.shape[:2])
|
| 164 |
+
blended_img += lap
|
| 165 |
+
|
| 166 |
+
return np.clip(blended_img, 0, 1)
|
| 167 |
|
| 168 |
def load_example_images(bg_path, obj_path, mask_path):
|
| 169 |
bg_img = cv2.imread(bg_path)
|