File size: 30,873 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union, Optional

import torch
import torch.nn.functional as F
from torch import nn

import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention

class Attention(nn.Module):
    def __init__(

        self,

        query_dim: int,

        cross_attention_dim: Optional[int] = None,

        heads: int = 8,

        kv_heads: Optional[int] = None,

        dim_head: int = 64,

        dropout: float = 0.0,

        bias: bool = False,

        qk_norm: Optional[str] = None,

        added_kv_proj_dim: Optional[int] = None,

        added_proj_bias: Optional[bool] = True,

        out_bias: bool = True,

        scale_qk: bool = True,

        only_cross_attention: bool = False,

        eps: float = 1e-5,

        rescale_output_factor: float = 1.0,

        residual_connection: bool = False,

        processor=None,

        out_dim: int = None,

        out_context_dim: int = None,

        context_pre_only=None,

        pre_only=False,

        elementwise_affine: bool = True,

        is_causal: bool = False,

        dtype=None, device=None, operations=None

    ):
        super().__init__()

        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
        self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
        self.query_dim = query_dim
        self.use_bias = bias
        self.is_cross_attention = cross_attention_dim is not None
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
        self.dropout = dropout
        self.fused_projections = False
        self.out_dim = out_dim if out_dim is not None else query_dim
        self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
        self.context_pre_only = context_pre_only
        self.pre_only = pre_only
        self.is_causal = is_causal

        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0

        self.heads = out_dim // dim_head if out_dim is not None else heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )

        self.group_norm = None
        self.spatial_norm = None

        self.norm_q = None
        self.norm_k = None

        self.norm_cross = None
        self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
            self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
            self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
        else:
            self.to_k = None
            self.to_v = None

        self.added_proj_bias = added_proj_bias
        if self.added_kv_proj_dim is not None:
            self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
            self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
            if self.context_pre_only is not None:
                self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device)
        else:
            self.add_q_proj = None
            self.add_k_proj = None
            self.add_v_proj = None

        if not self.pre_only:
            self.to_out = nn.ModuleList([])
            self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device))
            self.to_out.append(nn.Dropout(dropout))
        else:
            self.to_out = None

        if self.context_pre_only is not None and not self.context_pre_only:
            self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
        else:
            self.to_add_out = None

        self.norm_added_q = None
        self.norm_added_k = None
        self.processor = processor

    def forward(

        self,

        hidden_states: torch.Tensor,

        encoder_hidden_states: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        **cross_attention_kwargs,

    ) -> torch.Tensor:
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )


class CustomLiteLAProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE"""

    def __init__(self):
        self.kernel_func = nn.ReLU(inplace=False)
        self.eps = 1e-15
        self.pad_val = 1.0

    def apply_rotary_emb(

        self,

        x: torch.Tensor,

        freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings

        to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are

        reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting

        tensors contain rotary embeddings and are returned as real tensors.



        Args:

            x (`torch.Tensor`):

                Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply

            freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)



        Returns:

            Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.

        """
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)

        x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
        x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out

    def __call__(

        self,

        attn: Attention,

        hidden_states: torch.FloatTensor,

        encoder_hidden_states: torch.FloatTensor = None,

        attention_mask: Optional[torch.FloatTensor] = None,

        encoder_attention_mask: Optional[torch.FloatTensor] = None,

        rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,

        rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,

        *args,

        **kwargs,

    ) -> torch.FloatTensor:
        hidden_states_len = hidden_states.shape[1]

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        if encoder_hidden_states is not None:
            context_input_ndim = encoder_hidden_states.ndim
            if context_input_ndim == 4:
                batch_size, channel, height, width = encoder_hidden_states.shape
                encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size = hidden_states.shape[0]

        # `sample` projections.
        dtype = hidden_states.dtype
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        # `context` projections.
        has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
        if encoder_hidden_states is not None and has_encoder_hidden_state_proj:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            # attention
            if not attn.is_cross_attention:
                query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
                key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
                value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
            else:
                query = hidden_states
                key = encoder_hidden_states
                value = encoder_hidden_states

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
        key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2)
        value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)

        # RoPE需要 [B, H, S, D] 输入
        # 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE
        query = query.permute(0, 1, 3, 2)  # [B, H, S, D]  (从 [B, H, D, S])

        # Apply query and key normalization if needed
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if rotary_freqs_cis is not None:
            query = self.apply_rotary_emb(query, rotary_freqs_cis)
            if not attn.is_cross_attention:
                key = self.apply_rotary_emb(key, rotary_freqs_cis)
            elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
                key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)

        # 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S]
        query = query.permute(0, 1, 3, 2)  # [B, H, D, S]

        if attention_mask is not None:
            # attention_mask: [B, S] -> [B, 1, S, 1]
            attention_mask = attention_mask[:, None, :, None].to(key.dtype)  # [B, 1, S, 1]
            query = query * attention_mask.permute(0, 1, 3, 2)  # [B, H, S, D] * [B, 1, S, 1]
            if not attn.is_cross_attention:
                key = key * attention_mask  # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘
                value = value * attention_mask.permute(0, 1, 3, 2)  # 如果 value 是 [B, h, D, S],那么需调整mask以匹配S维度

        if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
            encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype)  # [B, 1, S_enc, 1]
            # 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc]
            key = key * encoder_attention_mask  # [B, h, S_enc, D] * [B, 1, S_enc, 1]
            value = value * encoder_attention_mask.permute(0, 1, 3, 2)  # [B, h, D, S_enc] * [B, 1, 1, S_enc]

        query = self.kernel_func(query)
        key = self.kernel_func(key)

        query, key, value = query.float(), key.float(), value.float()

        value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val)

        vk = torch.matmul(value, key)

        hidden_states = torch.matmul(vk, query)

        if hidden_states.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.float()

        hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)

        hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1)

        hidden_states = hidden_states.to(dtype)
        if encoder_hidden_states is not None:
            encoder_hidden_states = encoder_hidden_states.to(dtype)

        # Split the attention outputs.
        if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj:
            hidden_states, encoder_hidden_states = (
                hidden_states[:, : hidden_states_len],
                hidden_states[:, hidden_states_len:],
            )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"):
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if encoder_hidden_states is not None and context_input_ndim == 4:
            encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if torch.get_autocast_gpu_dtype() == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)
            if encoder_hidden_states is not None:
                encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

        return hidden_states, encoder_hidden_states


class CustomerAttnProcessor2_0:
    r"""

    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).

    """

    def apply_rotary_emb(

        self,

        x: torch.Tensor,

        freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings

        to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are

        reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting

        tensors contain rotary embeddings and are returned as real tensors.



        Args:

            x (`torch.Tensor`):

                Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply

            freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)



        Returns:

            Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.

        """
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)

        x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
        x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out

    def __call__(

        self,

        attn: Attention,

        hidden_states: torch.FloatTensor,

        encoder_hidden_states: torch.FloatTensor = None,

        attention_mask: Optional[torch.FloatTensor] = None,

        encoder_attention_mask: Optional[torch.FloatTensor] = None,

        rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,

        rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,

        *args,

        **kwargs,

    ) -> torch.Tensor:

        residual = hidden_states
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if rotary_freqs_cis is not None:
            query = self.apply_rotary_emb(query, rotary_freqs_cis)
            if not attn.is_cross_attention:
                key = self.apply_rotary_emb(key, rotary_freqs_cis)
            elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
                key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)

        if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
            # attention_mask: N x S1
            # encoder_attention_mask: N x S2
            # cross attention 整合attention_mask和encoder_attention_mask
            combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :]
            attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf)
            attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype)

        elif not attn.is_cross_attention and attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        hidden_states = optimized_attention(
            query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
        ).to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states

def val2list(x: list or tuple or any, repeat_time=1) -> list:  # type: ignore
    """Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
    if isinstance(x, (list, tuple)):
        return list(x)
    return [x for _ in range(repeat_time)]


def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple:  # type: ignore
    """Return tuple with min_len by repeating element at idx_repeat."""
    # convert to list first
    x = val2list(x)

    # repeat elements if necessary
    if len(x) > 0:
        x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]

    return tuple(x)


def t2i_modulate(x, shift, scale):
    return x * (1 + scale) + shift


def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]:
    if isinstance(kernel_size, tuple):
        return tuple([get_same_padding(ks) for ks in kernel_size])
    else:
        assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
        return kernel_size // 2

class ConvLayer(nn.Module):
    def __init__(

        self,

        in_dim: int,

        out_dim: int,

        kernel_size=3,

        stride=1,

        dilation=1,

        groups=1,

        padding: Union[int, None] = None,

        use_bias=False,

        norm=None,

        act=None,

        dtype=None, device=None, operations=None

    ):
        super().__init__()
        if padding is None:
            padding = get_same_padding(kernel_size)
            padding *= dilation

        self.in_dim = in_dim
        self.out_dim = out_dim
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.padding = padding
        self.use_bias = use_bias

        self.conv = operations.Conv1d(
            in_dim,
            out_dim,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=use_bias,
            device=device,
            dtype=dtype
        )
        if norm is not None:
            self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device)
        else:
            self.norm = None
        if act is not None:
            self.act = nn.SiLU(inplace=True)
        else:
            self.act = None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.conv(x)
        if self.norm:
            x = self.norm(x)
        if self.act:
            x = self.act(x)
        return x


class GLUMBConv(nn.Module):
    def __init__(

        self,

        in_features: int,

        hidden_features: int,

        out_feature=None,

        kernel_size=3,

        stride=1,

        padding: Union[int, None] = None,

        use_bias=False,

        norm=(None, None, None),

        act=("silu", "silu", None),

        dilation=1,

        dtype=None, device=None, operations=None

    ):
        out_feature = out_feature or in_features
        super().__init__()
        use_bias = val2tuple(use_bias, 3)
        norm = val2tuple(norm, 3)
        act = val2tuple(act, 3)

        self.glu_act = nn.SiLU(inplace=False)
        self.inverted_conv = ConvLayer(
            in_features,
            hidden_features * 2,
            1,
            use_bias=use_bias[0],
            norm=norm[0],
            act=act[0],
            dtype=dtype,
            device=device,
            operations=operations,
        )
        self.depth_conv = ConvLayer(
            hidden_features * 2,
            hidden_features * 2,
            kernel_size,
            stride=stride,
            groups=hidden_features * 2,
            padding=padding,
            use_bias=use_bias[1],
            norm=norm[1],
            act=None,
            dilation=dilation,
            dtype=dtype,
            device=device,
            operations=operations,
        )
        self.point_conv = ConvLayer(
            hidden_features,
            out_feature,
            1,
            use_bias=use_bias[2],
            norm=norm[2],
            act=act[2],
            dtype=dtype,
            device=device,
            operations=operations,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.transpose(1, 2)
        x = self.inverted_conv(x)
        x = self.depth_conv(x)

        x, gate = torch.chunk(x, 2, dim=1)
        gate = self.glu_act(gate)
        x = x * gate

        x = self.point_conv(x)
        x = x.transpose(1, 2)

        return x


class LinearTransformerBlock(nn.Module):
    """

    A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.

    """
    def __init__(

        self,

        dim,

        num_attention_heads,

        attention_head_dim,

        use_adaln_single=True,

        cross_attention_dim=None,

        added_kv_proj_dim=None,

        context_pre_only=False,

        mlp_ratio=4.0,

        add_cross_attention=False,

        add_cross_attention_dim=None,

        qk_norm=None,

        dtype=None, device=None, operations=None

    ):
        super().__init__()

        self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6)
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            added_kv_proj_dim=added_kv_proj_dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=True,
            qk_norm=qk_norm,
            processor=CustomLiteLAProcessor2_0(),
            dtype=dtype,
            device=device,
            operations=operations,
        )

        self.add_cross_attention = add_cross_attention
        self.context_pre_only = context_pre_only

        if add_cross_attention and add_cross_attention_dim is not None:
            self.cross_attn = Attention(
                query_dim=dim,
                cross_attention_dim=add_cross_attention_dim,
                added_kv_proj_dim=add_cross_attention_dim,
                dim_head=attention_head_dim,
                heads=num_attention_heads,
                out_dim=dim,
                context_pre_only=context_pre_only,
                bias=True,
                qk_norm=qk_norm,
                processor=CustomerAttnProcessor2_0(),
                dtype=dtype,
                device=device,
                operations=operations,
            )

        self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False)

        self.ff = GLUMBConv(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            use_bias=(True, True, False),
            norm=(None, None, None),
            act=("silu", "silu", None),
            dtype=dtype,
            device=device,
            operations=operations,
        )
        self.use_adaln_single = use_adaln_single
        if use_adaln_single:
            self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device))

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        encoder_hidden_states: torch.FloatTensor = None,

        attention_mask: torch.FloatTensor = None,

        encoder_attention_mask: torch.FloatTensor = None,

        rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,

        rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,

        temb: torch.FloatTensor = None,

    ):

        N = hidden_states.shape[0]

        # step 1: AdaLN single
        if self.use_adaln_single:
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1)
            ).chunk(6, dim=1)

        norm_hidden_states = self.norm1(hidden_states)
        if self.use_adaln_single:
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa

        # step 2: attention
        if not self.add_cross_attention:
            attn_output, encoder_hidden_states = self.attn(
                hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                rotary_freqs_cis=rotary_freqs_cis,
                rotary_freqs_cis_cross=rotary_freqs_cis_cross,
            )
        else:
            attn_output, _ = self.attn(
                hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=None,
                encoder_attention_mask=None,
                rotary_freqs_cis=rotary_freqs_cis,
                rotary_freqs_cis_cross=None,
            )

        if self.use_adaln_single:
            attn_output = gate_msa * attn_output
        hidden_states = attn_output + hidden_states

        if self.add_cross_attention:
            attn_output = self.cross_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                rotary_freqs_cis=rotary_freqs_cis,
                rotary_freqs_cis_cross=rotary_freqs_cis_cross,
            )
            hidden_states = attn_output + hidden_states

        # step 3: add norm
        norm_hidden_states = self.norm2(hidden_states)
        if self.use_adaln_single:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        # step 4: feed forward
        ff_output = self.ff(norm_hidden_states)
        if self.use_adaln_single:
            ff_output = gate_mlp * ff_output

        hidden_states = hidden_states + ff_output

        return hidden_states