Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,299 Bytes
77f10a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/ace_step_transformer.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List, Union
import torch
from torch import nn
import comfy.model_management
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
from .lyric_encoder import ConformerEncoder as LyricEncoder
def cross_norm(hidden_states, controlnet_input):
# input N x T x c
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
return controlnet_input
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
class T2IFinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device)
self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device))
self.out_channels = out_channels
self.patch_size = patch_size
def unpatchfy(
self,
hidden_states: torch.Tensor,
width: int,
):
# 4 unpatchify
new_height, new_width = 1, hidden_states.size(1)
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
).contiguous()
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
).contiguous()
if width > new_width:
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
elif width < new_width:
output = output[:, :, :, :width]
return output
def forward(self, x, t, output_length):
shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
# unpatchify
output = self.unpatchfy(x, output_length)
return output
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
height=16,
width=4096,
patch_size=(16, 1),
in_channels=8,
embed_dim=1152,
bias=True,
dtype=None, device=None, operations=None
):
super().__init__()
patch_size_h, patch_size_w = patch_size
self.early_conv_layers = nn.Sequential(
operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device),
operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device),
operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device)
)
self.patch_size = patch_size
self.height, self.width = height // patch_size_h, width // patch_size_w
self.base_size = self.width
def forward(self, latent):
# early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
latent = self.early_conv_layers(latent)
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
return latent
class ACEStepTransformer2DModel(nn.Module):
# _supports_gradient_checkpointing = True
def __init__(
self,
in_channels: Optional[int] = 8,
num_layers: int = 28,
inner_dim: int = 1536,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
mlp_ratio: float = 4.0,
out_channels: int = 8,
max_position: int = 32768,
rope_theta: float = 1000000.0,
speaker_embedding_dim: int = 512,
text_embedding_dim: int = 768,
ssl_encoder_depths: List[int] = [9, 9],
ssl_names: List[str] = ["mert", "m-hubert"],
ssl_latent_dims: List[int] = [1024, 768],
lyric_encoder_vocab_size: int = 6681,
lyric_hidden_size: int = 1024,
patch_size: List[int] = [16, 1],
max_height: int = 16,
max_width: int = 4096,
audio_model=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.dtype = dtype
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.out_channels = out_channels
self.max_position = max_position
self.patch_size = patch_size
self.rope_theta = rope_theta
self.rotary_emb = Qwen2RotaryEmbedding(
dim=self.attention_head_dim,
max_position_embeddings=self.max_position,
base=self.rope_theta,
dtype=dtype,
device=device,
)
# 2. Define input layers
self.in_channels = in_channels
self.num_layers = num_layers
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
LinearTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
add_cross_attention=True,
add_cross_attention_dim=self.inner_dim,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(self.num_layers)
]
)
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations)
self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device))
# speaker
self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# genre
self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# lyric
self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device)
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations)
self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device)
projector_dim = 2 * self.inner_dim
self.projectors = nn.ModuleList([
nn.Sequential(
operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device),
) for ssl_dim in ssl_latent_dims
])
self.proj_in = PatchEmbed(
height=max_height,
width=max_width,
patch_size=patch_size,
embed_dim=self.inner_dim,
bias=True,
dtype=dtype,
device=device,
operations=operations,
)
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations)
def forward_lyric_encoder(
self,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
out_dtype=None,
):
# N x T x D
lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype)
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
return prompt_prenet_out
def encode(
self,
encoder_text_hidden_states: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
lyrics_strength=1.0,
):
bs = encoder_text_hidden_states.shape[0]
device = encoder_text_hidden_states.device
# speaker embedding
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)
# genre embedding
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)
# lyric
encoder_lyric_hidden_states = self.forward_lyric_encoder(
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
out_dtype=encoder_text_hidden_states.dtype,
)
encoder_lyric_hidden_states *= lyrics_strength
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)
encoder_hidden_mask = None
if text_attention_mask is not None:
speaker_mask = torch.ones(bs, 1, device=device)
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)
return encoder_hidden_states, encoder_hidden_mask
def decode(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_mask: torch.Tensor,
timestep: Optional[torch.Tensor],
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
hidden_states = self.proj_in(hidden_states)
# controlnet logic
if block_controlnet_hidden_states is not None:
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
hidden_states = hidden_states + control_condi * controlnet_scale
# inner_hidden_states = []
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_hidden_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
return output
def forward(
self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
hidden_states = x
encoder_text_hidden_states = context
encoder_hidden_states, encoder_hidden_mask = self.encode(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embeds,
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
lyrics_strength=lyrics_strength,
)
output_length = hidden_states.shape[-1]
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
timestep=timestep,
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
)
return output
|