File size: 16,299 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/ace_step_transformer.py

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List, Union

import torch
from torch import nn

import comfy.model_management

from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
from .lyric_encoder import ConformerEncoder as LyricEncoder


def cross_norm(hidden_states, controlnet_input):
    # input N x T x c
    mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
    mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
    controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
    return controlnet_input


# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )


class T2IFinalLayer(nn.Module):
    """

    The final layer of Sana.

    """

    def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None):
        super().__init__()
        self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device)
        self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device))
        self.out_channels = out_channels
        self.patch_size = patch_size

    def unpatchfy(

        self,

        hidden_states: torch.Tensor,

        width: int,

    ):
        # 4 unpatchify
        new_height, new_width = 1, hidden_states.size(1)
        hidden_states = hidden_states.reshape(
            shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
        ).contiguous()
        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
        ).contiguous()
        if width > new_width:
            output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
        elif width < new_width:
            output = output[:, :, :, :width]
        return output

    def forward(self, x, t, output_length):
        shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1)
        x = t2i_modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        # unpatchify
        output = self.unpatchfy(x, output_length)
        return output


class PatchEmbed(nn.Module):
    """2D Image to Patch Embedding"""

    def __init__(

        self,

        height=16,

        width=4096,

        patch_size=(16, 1),

        in_channels=8,

        embed_dim=1152,

        bias=True,

        dtype=None, device=None, operations=None

    ):
        super().__init__()
        patch_size_h, patch_size_w = patch_size
        self.early_conv_layers = nn.Sequential(
            operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device),
            operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device),
            operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device)
        )
        self.patch_size = patch_size
        self.height, self.width = height // patch_size_h, width // patch_size_w
        self.base_size = self.width

    def forward(self, latent):
        # early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
        latent = self.early_conv_layers(latent)
        latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        return latent


class ACEStepTransformer2DModel(nn.Module):
    # _supports_gradient_checkpointing = True

    def __init__(

        self,

        in_channels: Optional[int] = 8,

        num_layers: int = 28,

        inner_dim: int = 1536,

        attention_head_dim: int = 64,

        num_attention_heads: int = 24,

        mlp_ratio: float = 4.0,

        out_channels: int = 8,

        max_position: int = 32768,

        rope_theta: float = 1000000.0,

        speaker_embedding_dim: int = 512,

        text_embedding_dim: int = 768,

        ssl_encoder_depths: List[int] = [9, 9],

        ssl_names: List[str] = ["mert", "m-hubert"],

        ssl_latent_dims: List[int] = [1024, 768],

        lyric_encoder_vocab_size: int = 6681,

        lyric_hidden_size: int = 1024,

        patch_size: List[int] = [16, 1],

        max_height: int = 16,

        max_width: int = 4096,

        audio_model=None,

        dtype=None, device=None, operations=None



    ):
        super().__init__()

        self.dtype = dtype
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.inner_dim = inner_dim
        self.out_channels = out_channels
        self.max_position = max_position
        self.patch_size = patch_size

        self.rope_theta = rope_theta

        self.rotary_emb = Qwen2RotaryEmbedding(
            dim=self.attention_head_dim,
            max_position_embeddings=self.max_position,
            base=self.rope_theta,
            dtype=dtype,
            device=device,
        )

        # 2. Define input layers
        self.in_channels = in_channels

        self.num_layers = num_layers
        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                LinearTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    mlp_ratio=mlp_ratio,
                    add_cross_attention=True,
                    add_cross_attention_dim=self.inner_dim,
                    dtype=dtype,
                    device=device,
                    operations=operations,
                )
                for i in range(self.num_layers)
            ]
        )

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations)
        self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device))

        # speaker
        self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device)

        # genre
        self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device)

        # lyric
        self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device)
        self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations)
        self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device)

        projector_dim = 2 * self.inner_dim

        self.projectors = nn.ModuleList([
            nn.Sequential(
                operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device),
            ) for ssl_dim in ssl_latent_dims
        ])

        self.proj_in = PatchEmbed(
            height=max_height,
            width=max_width,
            patch_size=patch_size,
            embed_dim=self.inner_dim,
            bias=True,
            dtype=dtype,
            device=device,
            operations=operations,
        )

        self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations)

    def forward_lyric_encoder(

        self,

        lyric_token_idx: Optional[torch.LongTensor] = None,

        lyric_mask: Optional[torch.LongTensor] = None,

        out_dtype=None,

    ):
        # N x T x D
        lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype)
        prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
        prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
        return prompt_prenet_out

    def encode(

        self,

        encoder_text_hidden_states: Optional[torch.Tensor] = None,

        text_attention_mask: Optional[torch.LongTensor] = None,

        speaker_embeds: Optional[torch.FloatTensor] = None,

        lyric_token_idx: Optional[torch.LongTensor] = None,

        lyric_mask: Optional[torch.LongTensor] = None,

        lyrics_strength=1.0,

    ):

        bs = encoder_text_hidden_states.shape[0]
        device = encoder_text_hidden_states.device

        # speaker embedding
        encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)

        # genre embedding
        encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)

        # lyric
        encoder_lyric_hidden_states = self.forward_lyric_encoder(
            lyric_token_idx=lyric_token_idx,
            lyric_mask=lyric_mask,
            out_dtype=encoder_text_hidden_states.dtype,
        )

        encoder_lyric_hidden_states *= lyrics_strength

        encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)

        encoder_hidden_mask = None
        if text_attention_mask is not None:
            speaker_mask = torch.ones(bs, 1, device=device)
            encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)

        return encoder_hidden_states, encoder_hidden_mask

    def decode(

        self,

        hidden_states: torch.Tensor,

        attention_mask: torch.Tensor,

        encoder_hidden_states: torch.Tensor,

        encoder_hidden_mask: torch.Tensor,

        timestep: Optional[torch.Tensor],

        output_length: int = 0,

        block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,

        controlnet_scale: Union[float, torch.Tensor] = 1.0,

    ):
        embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
        temb = self.t_block(embedded_timestep)

        hidden_states = self.proj_in(hidden_states)

        # controlnet logic
        if block_controlnet_hidden_states is not None:
            control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
            hidden_states = hidden_states + control_condi * controlnet_scale

        # inner_hidden_states = []

        rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
        encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])

        for index_block, block in enumerate(self.transformer_blocks):
            hidden_states = block(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_hidden_mask,
                rotary_freqs_cis=rotary_freqs_cis,
                rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
                temb=temb,
            )

        output = self.final_layer(hidden_states, embedded_timestep, output_length)
        return output

    def forward(

        self,

        x,

        timestep,

        attention_mask=None,

        context: Optional[torch.Tensor] = None,

        text_attention_mask: Optional[torch.LongTensor] = None,

        speaker_embeds: Optional[torch.FloatTensor] = None,

        lyric_token_idx: Optional[torch.LongTensor] = None,

        lyric_mask: Optional[torch.LongTensor] = None,

        block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,

        controlnet_scale: Union[float, torch.Tensor] = 1.0,

        lyrics_strength=1.0,

        **kwargs

    ):
        hidden_states = x
        encoder_text_hidden_states = context
        encoder_hidden_states, encoder_hidden_mask = self.encode(
            encoder_text_hidden_states=encoder_text_hidden_states,
            text_attention_mask=text_attention_mask,
            speaker_embeds=speaker_embeds,
            lyric_token_idx=lyric_token_idx,
            lyric_mask=lyric_mask,
            lyrics_strength=lyrics_strength,
        )

        output_length = hidden_states.shape[-1]

        output = self.decode(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_hidden_mask=encoder_hidden_mask,
            timestep=timestep,
            output_length=output_length,
            block_controlnet_hidden_states=block_controlnet_hidden_states,
            controlnet_scale=controlnet_scale,
        )

        return output