Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,522 Bytes
77f10a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
from typing import Union
import logging
import torch
from comfy.comfy_types.node_typing import IO
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
MinimaxVideoGenerationRequest,
MinimaxVideoGenerationResponse,
MinimaxFileRetrieveResponse,
MinimaxTaskResultResponse,
SubjectReferenceItem,
Model
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_bytesio,
upload_images_to_comfyapi,
validate_string,
)
from server import PromptServer
I2V_AVERAGE_DURATION = 114
T2V_AVERAGE_DURATION = 234
class MinimaxTextToVideoNode:
"""
Generates videos synchronously based on a prompt, and optional parameters using MiniMax's API.
"""
AVERAGE_DURATION = T2V_AVERAGE_DURATION
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"T2V-01",
"T2V-01-Director",
],
{
"default": "T2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
def generate_video(
self,
prompt_text,
seed=0,
model="T2V-01",
image: torch.Tensor=None, # used for ImageToVideo
subject: torch.Tensor=None, # used for SubjectToVideo
unique_id: Union[str, None]=None,
**kwargs,
):
'''
Function used between MiniMax nodes - supports T2V, I2V, and S2V, based on provided arguments.
'''
if image is None:
validate_string(prompt_text, field_name="prompt_text")
# upload image, if passed in
image_url = None
if image is not None:
image_url = upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs)[0]
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
subject_reference = None
if subject is not None:
subject_url = upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=kwargs)[0]
subject_reference = [SubjectReferenceItem(image=subject_url)]
video_generate_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/video_generation",
method=HttpMethod.POST,
request_model=MinimaxVideoGenerationRequest,
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
model=Model(model),
prompt=prompt_text,
callback_url=None,
first_frame_image=image_url,
subject_reference=subject_reference,
prompt_optimizer=None,
),
auth_kwargs=kwargs,
)
response = video_generate_operation.execute()
task_id = response.task_id
if not task_id:
raise Exception(f"MiniMax generation failed: {response.base_resp}")
video_generate_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/minimax/query/video_generation",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxTaskResultResponse,
query_params={"task_id": task_id},
),
completed_statuses=["Success"],
failed_statuses=["Fail"],
status_extractor=lambda x: x.status.value,
estimated_duration=self.AVERAGE_DURATION,
node_id=unique_id,
auth_kwargs=kwargs,
)
task_result = video_generate_operation.execute()
file_id = task_result.file_id
if file_id is None:
raise Exception("Request was not successful. Missing file ID.")
file_retrieve_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/files/retrieve",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxFileRetrieveResponse,
query_params={"file_id": int(file_id)},
),
request=EmptyRequest(),
auth_kwargs=kwargs,
)
file_result = file_retrieve_operation.execute()
file_url = file_result.file.download_url
if file_url is None:
raise Exception(
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info(f"Generated video URL: {file_url}")
if unique_id:
if hasattr(file_result.file, "backup_download_url"):
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
else:
message = f"Result URL: {file_url}"
PromptServer.instance.send_progress_text(message, unique_id)
video_io = download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
raise Exception(error_msg)
return (VideoFromFile(video_io),)
class MinimaxImageToVideoNode(MinimaxTextToVideoNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
AVERAGE_DURATION = I2V_AVERAGE_DURATION
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (
IO.IMAGE,
{
"tooltip": "Image to use as first frame of video generation"
},
),
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"I2V-01-Director",
"I2V-01",
"I2V-01-live",
],
{
"default": "I2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from an image and prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
class MinimaxSubjectToVideoNode(MinimaxTextToVideoNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
AVERAGE_DURATION = T2V_AVERAGE_DURATION
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"subject": (
IO.IMAGE,
{
"tooltip": "Image of subject to reference video generation"
},
),
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"S2V-01",
],
{
"default": "S2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from an image and prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"MinimaxTextToVideoNode": MinimaxTextToVideoNode,
"MinimaxImageToVideoNode": MinimaxImageToVideoNode,
# "MinimaxSubjectToVideoNode": MinimaxSubjectToVideoNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"MinimaxTextToVideoNode": "MiniMax Text to Video",
"MinimaxImageToVideoNode": "MiniMax Image to Video",
"MinimaxSubjectToVideoNode": "MiniMax Subject to Video",
}
|