import torch def project(v0, v1): v1 = torch.nn.functional.normalize(v1, dim=[-1, -2, -3]) v0_parallel = (v0 * v1).sum(dim=[-1, -2, -3], keepdim=True) * v1 v0_orthogonal = v0 - v0_parallel return v0_parallel, v0_orthogonal class APG: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL",), "eta": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01, "tooltip": "Controls the scale of the parallel guidance vector. Default CFG behavior at a setting of 1."}), "norm_threshold": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 50.0, "step": 0.1, "tooltip": "Normalize guidance vector to this value, normalization disable at a setting of 0."}), "momentum": ("FLOAT", {"default": 0.0, "min": -5.0, "max": 1.0, "step": 0.01, "tooltip":"Controls a running average of guidance during diffusion, disabled at a setting of 0."}), } } RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "sampling/custom_sampling" def patch(self, model, eta, norm_threshold, momentum): running_avg = 0 prev_sigma = None def pre_cfg_function(args): nonlocal running_avg, prev_sigma if len(args["conds_out"]) == 1: return args["conds_out"] cond = args["conds_out"][0] uncond = args["conds_out"][1] sigma = args["sigma"][0] cond_scale = args["cond_scale"] if prev_sigma is not None and sigma > prev_sigma: running_avg = 0 prev_sigma = sigma guidance = cond - uncond if momentum != 0: if not torch.is_tensor(running_avg): running_avg = guidance else: running_avg = momentum * running_avg + guidance guidance = running_avg if norm_threshold > 0: guidance_norm = guidance.norm(p=2, dim=[-1, -2, -3], keepdim=True) scale = torch.minimum( torch.ones_like(guidance_norm), norm_threshold / guidance_norm ) guidance = guidance * scale guidance_parallel, guidance_orthogonal = project(guidance, cond) modified_guidance = guidance_orthogonal + eta * guidance_parallel modified_cond = (uncond + modified_guidance) + (cond - uncond) / cond_scale return [modified_cond, uncond] + args["conds_out"][2:] m = model.clone() m.set_model_sampler_pre_cfg_function(pre_cfg_function) return (m,) NODE_CLASS_MAPPINGS = { "APG": APG, } NODE_DISPLAY_NAME_MAPPINGS = { "APG": "Adaptive Projected Guidance", }