Create yellow_tint_cleaner.py
Browse files- yellow_tint_cleaner.py +213 -0
yellow_tint_cleaner.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageEnhance, ImageChops
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def normalize_gray(image: Image) -> Image:
|
5 |
+
"""Normalize a grayscale image using histogram equalization."""
|
6 |
+
if image.mode != 'L':
|
7 |
+
image = image.convert('L')
|
8 |
+
img = np.asarray(image)
|
9 |
+
balanced_img = img.copy()
|
10 |
+
hist, bins = np.histogram(img.reshape(-1), 256, (0, 256))
|
11 |
+
bmin = np.min(np.where(hist > (hist.sum() * 0.0005)))
|
12 |
+
bmax = np.max(np.where(hist > (hist.sum() * 0.0005)))
|
13 |
+
balanced_img = np.clip(img, bmin, bmax)
|
14 |
+
balanced_img = ((balanced_img - bmin) / (bmax - bmin) * 255)
|
15 |
+
return Image.fromarray(balanced_img).convert('L')
|
16 |
+
|
17 |
+
def image_channel_split(image: Image, mode: str = 'RGBA') -> tuple:
|
18 |
+
"""Split image into channels based on color mode."""
|
19 |
+
_image = image.convert('RGBA')
|
20 |
+
channel1 = Image.new('L', size=_image.size, color='black')
|
21 |
+
channel2 = Image.new('L', size=_image.size, color='black')
|
22 |
+
channel3 = Image.new('L', size=_image.size, color='black')
|
23 |
+
channel4 = Image.new('L', size=_image.size, color='black')
|
24 |
+
|
25 |
+
if mode == 'RGBA':
|
26 |
+
channel1, channel2, channel3, channel4 = _image.split()
|
27 |
+
elif mode == 'RGB':
|
28 |
+
channel1, channel2, channel3 = _image.convert('RGB').split()
|
29 |
+
elif mode == 'YCbCr':
|
30 |
+
channel1, channel2, channel3 = _image.convert('YCbCr').split()
|
31 |
+
elif mode == 'LAB':
|
32 |
+
channel1, channel2, channel3 = _image.convert('LAB').split()
|
33 |
+
elif mode == 'HSV':
|
34 |
+
channel1, channel2, channel3 = _image.convert('HSV').split()
|
35 |
+
|
36 |
+
return channel1, channel2, channel3, channel4
|
37 |
+
|
38 |
+
def image_channel_merge(channels: tuple, mode: str = 'RGB') -> Image:
|
39 |
+
"""Merge channels back into an image based on color mode."""
|
40 |
+
channel1 = channels[0].convert('L')
|
41 |
+
channel2 = channels[1].convert('L')
|
42 |
+
channel3 = channels[2].convert('L')
|
43 |
+
channel4 = Image.new('L', size=channel1.size, color='white')
|
44 |
+
|
45 |
+
if mode == 'RGBA':
|
46 |
+
if len(channels) > 3:
|
47 |
+
channel4 = channels[3].convert('L')
|
48 |
+
ret_image = Image.merge('RGBA', [channel1, channel2, channel3, channel4])
|
49 |
+
elif mode == 'RGB':
|
50 |
+
ret_image = Image.merge('RGB', [channel1, channel2, channel3])
|
51 |
+
elif mode == 'YCbCr':
|
52 |
+
ret_image = Image.merge('YCbCr', [channel1, channel2, channel3]).convert('RGB')
|
53 |
+
elif mode == 'LAB':
|
54 |
+
ret_image = Image.merge('LAB', [channel1, channel2, channel3]).convert('RGB')
|
55 |
+
elif mode == 'HSV':
|
56 |
+
ret_image = Image.merge('HSV', [channel1, channel2, channel3]).convert('RGB')
|
57 |
+
|
58 |
+
return ret_image
|
59 |
+
|
60 |
+
def balance_to_gamma(balance: int) -> float:
|
61 |
+
"""Convert color balance value to gamma value."""
|
62 |
+
return 0.00005 * balance * balance - 0.01 * balance + 1
|
63 |
+
|
64 |
+
def gamma_trans(image: Image, gamma: float) -> Image:
|
65 |
+
"""Apply gamma correction to an image."""
|
66 |
+
if gamma == 1.0:
|
67 |
+
return image
|
68 |
+
img_array = np.array(image)
|
69 |
+
img_array = np.power(img_array / 255.0, gamma) * 255.0
|
70 |
+
return Image.fromarray(img_array.astype(np.uint8))
|
71 |
+
|
72 |
+
def RGB2RGBA(image: Image, mask: Image) -> Image:
|
73 |
+
"""Convert RGB image to RGBA using provided mask."""
|
74 |
+
if image.mode != 'RGB':
|
75 |
+
image = image.convert('RGB')
|
76 |
+
if mask.mode != 'L':
|
77 |
+
mask = mask.convert('L')
|
78 |
+
return Image.merge('RGBA', (*image.split(), mask))
|
79 |
+
|
80 |
+
def chop_image_v2(background_image: Image, layer_image: Image, blend_mode: str, opacity: int) -> Image:
|
81 |
+
"""Blend two images together with specified blend mode and opacity."""
|
82 |
+
if background_image.mode != 'RGB':
|
83 |
+
background_image = background_image.convert('RGB')
|
84 |
+
if layer_image.mode != 'RGB':
|
85 |
+
layer_image = layer_image.convert('RGB')
|
86 |
+
|
87 |
+
# Convert opacity to float (0-1)
|
88 |
+
opacity = opacity / 100.0
|
89 |
+
|
90 |
+
# Create a copy of the background image
|
91 |
+
result = background_image.copy()
|
92 |
+
|
93 |
+
# Apply blend mode
|
94 |
+
if blend_mode == "normal":
|
95 |
+
result = Image.blend(background_image, layer_image, opacity)
|
96 |
+
elif blend_mode == "multiply":
|
97 |
+
result = ImageChops.multiply(background_image, layer_image)
|
98 |
+
result = Image.blend(background_image, result, opacity)
|
99 |
+
elif blend_mode == "screen":
|
100 |
+
result = ImageChops.screen(background_image, layer_image)
|
101 |
+
result = Image.blend(background_image, result, opacity)
|
102 |
+
elif blend_mode == "overlay":
|
103 |
+
result = ImageChops.overlay(background_image, layer_image)
|
104 |
+
result = Image.blend(background_image, result, opacity)
|
105 |
+
|
106 |
+
return result
|
107 |
+
|
108 |
+
def auto_adjust(image: Image, strength: int = 100, brightness: int = 0,
|
109 |
+
contrast: int = 0, saturation: int = 0,
|
110 |
+
red: int = 0, green: int = 0, blue: int = 0,
|
111 |
+
mode: str = 'RGB') -> Image:
|
112 |
+
"""
|
113 |
+
Apply automatic adjustments to an image.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
image: PIL Image to adjust
|
117 |
+
strength: Overall strength of the adjustment (0-100)
|
118 |
+
brightness: Brightness adjustment (-100 to 100)
|
119 |
+
contrast: Contrast adjustment (-100 to 100)
|
120 |
+
saturation: Saturation adjustment (-100 to 100)
|
121 |
+
red: Red channel adjustment (-100 to 100)
|
122 |
+
green: Green channel adjustment (-100 to 100)
|
123 |
+
blue: Blue channel adjustment (-100 to 100)
|
124 |
+
mode: Color mode for processing ('RGB', 'lum + sat', 'luminance', 'saturation', 'mono')
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
Adjusted PIL Image
|
128 |
+
"""
|
129 |
+
def auto_level_gray(image):
|
130 |
+
"""Apply auto levels to a grayscale image."""
|
131 |
+
gray_image = Image.new("L", image.size, color='gray')
|
132 |
+
gray_image.paste(image.convert('L'))
|
133 |
+
return normalize_gray(gray_image)
|
134 |
+
|
135 |
+
# Calculate adjustment factors
|
136 |
+
if brightness < 0:
|
137 |
+
brightness_offset = brightness / 100 + 1
|
138 |
+
else:
|
139 |
+
brightness_offset = brightness / 50 + 1
|
140 |
+
|
141 |
+
if contrast < 0:
|
142 |
+
contrast_offset = contrast / 100 + 1
|
143 |
+
else:
|
144 |
+
contrast_offset = contrast / 50 + 1
|
145 |
+
|
146 |
+
if saturation < 0:
|
147 |
+
saturation_offset = saturation / 100 + 1
|
148 |
+
else:
|
149 |
+
saturation_offset = saturation / 50 + 1
|
150 |
+
|
151 |
+
# Get color channel gammas
|
152 |
+
red_gamma = balance_to_gamma(red)
|
153 |
+
green_gamma = balance_to_gamma(green)
|
154 |
+
blue_gamma = balance_to_gamma(blue)
|
155 |
+
|
156 |
+
# Process image based on mode
|
157 |
+
if mode == 'RGB':
|
158 |
+
r, g, b, _ = image_channel_split(image, mode='RGB')
|
159 |
+
r = auto_level_gray(r)
|
160 |
+
g = auto_level_gray(g)
|
161 |
+
b = auto_level_gray(b)
|
162 |
+
ret_image = image_channel_merge((r, g, b), 'RGB')
|
163 |
+
elif mode == 'lum + sat':
|
164 |
+
h, s, v, _ = image_channel_split(image, mode='HSV')
|
165 |
+
s = auto_level_gray(s)
|
166 |
+
ret_image = image_channel_merge((h, s, v), 'HSV')
|
167 |
+
l, a, b, _ = image_channel_split(ret_image, mode='LAB')
|
168 |
+
l = auto_level_gray(l)
|
169 |
+
ret_image = image_channel_merge((l, a, b), 'LAB')
|
170 |
+
elif mode == 'luminance':
|
171 |
+
l, a, b, _ = image_channel_split(image, mode='LAB')
|
172 |
+
l = auto_level_gray(l)
|
173 |
+
ret_image = image_channel_merge((l, a, b), 'LAB')
|
174 |
+
elif mode == 'saturation':
|
175 |
+
h, s, v, _ = image_channel_split(image, mode='HSV')
|
176 |
+
s = auto_level_gray(s)
|
177 |
+
ret_image = image_channel_merge((h, s, v), 'HSV')
|
178 |
+
else: # mono
|
179 |
+
gray = image.convert('L')
|
180 |
+
ret_image = auto_level_gray(gray).convert('RGB')
|
181 |
+
|
182 |
+
# Apply color channel adjustments if not in mono mode
|
183 |
+
if (red or green or blue) and mode != "mono":
|
184 |
+
r, g, b, _ = image_channel_split(ret_image, mode='RGB')
|
185 |
+
if red:
|
186 |
+
r = gamma_trans(r, red_gamma).convert('L')
|
187 |
+
if green:
|
188 |
+
g = gamma_trans(g, green_gamma).convert('L')
|
189 |
+
if blue:
|
190 |
+
b = gamma_trans(b, blue_gamma).convert('L')
|
191 |
+
ret_image = image_channel_merge((r, g, b), 'RGB')
|
192 |
+
|
193 |
+
# Apply brightness, contrast, and saturation
|
194 |
+
if brightness:
|
195 |
+
brightness_image = ImageEnhance.Brightness(ret_image)
|
196 |
+
ret_image = brightness_image.enhance(factor=brightness_offset)
|
197 |
+
|
198 |
+
if contrast:
|
199 |
+
contrast_image = ImageEnhance.Contrast(ret_image)
|
200 |
+
ret_image = contrast_image.enhance(factor=contrast_offset)
|
201 |
+
|
202 |
+
if saturation:
|
203 |
+
color_image = ImageEnhance.Color(ret_image)
|
204 |
+
ret_image = color_image.enhance(factor=saturation_offset)
|
205 |
+
|
206 |
+
# Blend with original image based on strength
|
207 |
+
ret_image = chop_image_v2(image, ret_image, blend_mode="normal", opacity=strength)
|
208 |
+
|
209 |
+
# Handle RGBA mode
|
210 |
+
if image.mode == 'RGBA':
|
211 |
+
ret_image = RGB2RGBA(ret_image, image.split()[-1])
|
212 |
+
|
213 |
+
return ret_image
|