from PIL import Image, ImageEnhance, ImageChops import numpy as np def normalize_gray(image: Image) -> Image: """Normalize a grayscale image using histogram equalization.""" if image.mode != 'L': image = image.convert('L') img = np.asarray(image) balanced_img = img.copy() hist, bins = np.histogram(img.reshape(-1), 256, (0, 256)) bmin = np.min(np.where(hist > (hist.sum() * 0.0005))) bmax = np.max(np.where(hist > (hist.sum() * 0.0005))) balanced_img = np.clip(img, bmin, bmax) balanced_img = ((balanced_img - bmin) / (bmax - bmin) * 255) return Image.fromarray(balanced_img).convert('L') def image_channel_split(image: Image, mode: str = 'RGBA') -> tuple: """Split image into channels based on color mode.""" _image = image.convert('RGBA') channel1 = Image.new('L', size=_image.size, color='black') channel2 = Image.new('L', size=_image.size, color='black') channel3 = Image.new('L', size=_image.size, color='black') channel4 = Image.new('L', size=_image.size, color='black') if mode == 'RGBA': channel1, channel2, channel3, channel4 = _image.split() elif mode == 'RGB': channel1, channel2, channel3 = _image.convert('RGB').split() elif mode == 'YCbCr': channel1, channel2, channel3 = _image.convert('YCbCr').split() elif mode == 'LAB': channel1, channel2, channel3 = _image.convert('LAB').split() elif mode == 'HSV': channel1, channel2, channel3 = _image.convert('HSV').split() return channel1, channel2, channel3, channel4 def image_channel_merge(channels: tuple, mode: str = 'RGB') -> Image: """Merge channels back into an image based on color mode.""" channel1 = channels[0].convert('L') channel2 = channels[1].convert('L') channel3 = channels[2].convert('L') channel4 = Image.new('L', size=channel1.size, color='white') if mode == 'RGBA': if len(channels) > 3: channel4 = channels[3].convert('L') ret_image = Image.merge('RGBA', [channel1, channel2, channel3, channel4]) elif mode == 'RGB': ret_image = Image.merge('RGB', [channel1, channel2, channel3]) elif mode == 'YCbCr': ret_image = Image.merge('YCbCr', [channel1, channel2, channel3]).convert('RGB') elif mode == 'LAB': ret_image = Image.merge('LAB', [channel1, channel2, channel3]).convert('RGB') elif mode == 'HSV': ret_image = Image.merge('HSV', [channel1, channel2, channel3]).convert('RGB') return ret_image def balance_to_gamma(balance: int) -> float: """Convert color balance value to gamma value.""" return 0.00005 * balance * balance - 0.01 * balance + 1 def gamma_trans(image: Image, gamma: float) -> Image: """Apply gamma correction to an image.""" if gamma == 1.0: return image img_array = np.array(image) img_array = np.power(img_array / 255.0, gamma) * 255.0 return Image.fromarray(img_array.astype(np.uint8)) def RGB2RGBA(image: Image, mask: Image) -> Image: """Convert RGB image to RGBA using provided mask.""" if image.mode != 'RGB': image = image.convert('RGB') if mask.mode != 'L': mask = mask.convert('L') return Image.merge('RGBA', (*image.split(), mask)) def chop_image_v2(background_image: Image, layer_image: Image, blend_mode: str, opacity: int) -> Image: """Blend two images together with specified blend mode and opacity.""" if background_image.mode != 'RGB': background_image = background_image.convert('RGB') if layer_image.mode != 'RGB': layer_image = layer_image.convert('RGB') # Convert opacity to float (0-1) opacity = opacity / 100.0 # Create a copy of the background image result = background_image.copy() # Apply blend mode if blend_mode == "normal": result = Image.blend(background_image, layer_image, opacity) elif blend_mode == "multiply": result = ImageChops.multiply(background_image, layer_image) result = Image.blend(background_image, result, opacity) elif blend_mode == "screen": result = ImageChops.screen(background_image, layer_image) result = Image.blend(background_image, result, opacity) elif blend_mode == "overlay": result = ImageChops.overlay(background_image, layer_image) result = Image.blend(background_image, result, opacity) return result def auto_adjust(image: Image, strength: int = 100, brightness: int = 0, contrast: int = 0, saturation: int = 0, red: int = 0, green: int = 0, blue: int = 0, mode: str = 'RGB') -> Image: """ Apply automatic adjustments to an image. Args: image: PIL Image to adjust strength: Overall strength of the adjustment (0-100) brightness: Brightness adjustment (-100 to 100) contrast: Contrast adjustment (-100 to 100) saturation: Saturation adjustment (-100 to 100) red: Red channel adjustment (-100 to 100) green: Green channel adjustment (-100 to 100) blue: Blue channel adjustment (-100 to 100) mode: Color mode for processing ('RGB', 'lum + sat', 'luminance', 'saturation', 'mono') Returns: Adjusted PIL Image """ def auto_level_gray(image): """Apply auto levels to a grayscale image.""" gray_image = Image.new("L", image.size, color='gray') gray_image.paste(image.convert('L')) return normalize_gray(gray_image) # Calculate adjustment factors if brightness < 0: brightness_offset = brightness / 100 + 1 else: brightness_offset = brightness / 50 + 1 if contrast < 0: contrast_offset = contrast / 100 + 1 else: contrast_offset = contrast / 50 + 1 if saturation < 0: saturation_offset = saturation / 100 + 1 else: saturation_offset = saturation / 50 + 1 # Get color channel gammas red_gamma = balance_to_gamma(red) green_gamma = balance_to_gamma(green) blue_gamma = balance_to_gamma(blue) # Process image based on mode if mode == 'RGB': r, g, b, _ = image_channel_split(image, mode='RGB') r = auto_level_gray(r) g = auto_level_gray(g) b = auto_level_gray(b) ret_image = image_channel_merge((r, g, b), 'RGB') elif mode == 'lum + sat': h, s, v, _ = image_channel_split(image, mode='HSV') s = auto_level_gray(s) ret_image = image_channel_merge((h, s, v), 'HSV') l, a, b, _ = image_channel_split(ret_image, mode='LAB') l = auto_level_gray(l) ret_image = image_channel_merge((l, a, b), 'LAB') elif mode == 'luminance': l, a, b, _ = image_channel_split(image, mode='LAB') l = auto_level_gray(l) ret_image = image_channel_merge((l, a, b), 'LAB') elif mode == 'saturation': h, s, v, _ = image_channel_split(image, mode='HSV') s = auto_level_gray(s) ret_image = image_channel_merge((h, s, v), 'HSV') else: # mono gray = image.convert('L') ret_image = auto_level_gray(gray).convert('RGB') # Apply color channel adjustments if not in mono mode if (red or green or blue) and mode != "mono": r, g, b, _ = image_channel_split(ret_image, mode='RGB') if red: r = gamma_trans(r, red_gamma).convert('L') if green: g = gamma_trans(g, green_gamma).convert('L') if blue: b = gamma_trans(b, blue_gamma).convert('L') ret_image = image_channel_merge((r, g, b), 'RGB') # Apply brightness, contrast, and saturation if brightness: brightness_image = ImageEnhance.Brightness(ret_image) ret_image = brightness_image.enhance(factor=brightness_offset) if contrast: contrast_image = ImageEnhance.Contrast(ret_image) ret_image = contrast_image.enhance(factor=contrast_offset) if saturation: color_image = ImageEnhance.Color(ret_image) ret_image = color_image.enhance(factor=saturation_offset) # Blend with original image based on strength ret_image = chop_image_v2(image, ret_image, blend_mode="normal", opacity=strength) # Handle RGBA mode if image.mode == 'RGBA': ret_image = RGB2RGBA(ret_image, image.split()[-1]) return ret_image