import subprocess import sys # Install the necessary packages if not already installed subprocess.check_call([sys.executable, "-m", "pip", "install", "transformers", "gradio"]) from transformers import MBartForConditionalGeneration, MBart50Tokenizer import gradio as gr # Load mBART model and tokenizer for multilingual translation model_name = 'facebook/mbart-large-50-many-to-one-mmt' # mBART 50 for many-to-one translation (many languages to English) tokenizer = MBart50Tokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) # Set the source language code (Tamil) tokenizer.src_lang = "ta_IN" # Tamil language code # Function for translation def translate(text): inputs = tokenizer(text, return_tensors="pt") generated_tokens = model.generate(**inputs) translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] return translated_text # Launch a Gradio interface interface = gr.Interface(fn=translate, inputs="text", outputs="text", title="Tamil to English Translator") interface.launch()