Spaces:
Sleeping
Sleeping
initial commit
Browse files- README.md +1 -1
- app.py +372 -0
- requirements.txt +81 -0
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Reddit Search
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: Reddit Search
|
| 3 |
+
emoji: π
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
app.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import time
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
import os
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
XAI_API_KEY = os.getenv("XAI_API_KEY")
|
| 12 |
+
|
| 13 |
+
# Global variable to store the most recent analysis results
|
| 14 |
+
GLOBAL_ANALYSIS_STORAGE = {
|
| 15 |
+
'subreddit': None,
|
| 16 |
+
'data': None
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
def call_LLM(query):
|
| 20 |
+
return call_groq(query)
|
| 21 |
+
|
| 22 |
+
def call_groq(query):
|
| 23 |
+
from groq import Groq
|
| 24 |
+
client = Groq()
|
| 25 |
+
chat_completion = client.chat.completions.create(
|
| 26 |
+
messages=[
|
| 27 |
+
{"role": "system", "content": query}
|
| 28 |
+
],
|
| 29 |
+
model="llama3-8b-8192",
|
| 30 |
+
temperature=0.5,
|
| 31 |
+
max_tokens=1024,
|
| 32 |
+
top_p=1,
|
| 33 |
+
stop=None,
|
| 34 |
+
stream=False,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
return chat_completion.choices[0].message.content
|
| 38 |
+
|
| 39 |
+
def process(row):
|
| 40 |
+
"""
|
| 41 |
+
Format this so that the model sees full post for now
|
| 42 |
+
"""
|
| 43 |
+
# title
|
| 44 |
+
# comment_body
|
| 45 |
+
prompt = f"The below is a reddit post. Take a look and tell me if there is a business problem to be solved here ||| title: {row['post_title']} ||| comment: {row['comment_body']}"
|
| 46 |
+
return call_LLM(prompt)
|
| 47 |
+
|
| 48 |
+
# ... [Keep previous helper functions like extract_comment_data, fetch_top_comments, fetch_subreddits, fetch_top_posts] ...
|
| 49 |
+
|
| 50 |
+
def extract_comment_data(comment, post_info):
|
| 51 |
+
"""Extract relevant data from a comment"""
|
| 52 |
+
return {
|
| 53 |
+
'subreddit': post_info['subreddit'],
|
| 54 |
+
'post_title': post_info['title'],
|
| 55 |
+
'post_score': post_info['score'],
|
| 56 |
+
'post_created_utc': post_info['created_utc'],
|
| 57 |
+
'comment_id': comment['data'].get('id'),
|
| 58 |
+
'comment_author': comment['data'].get('author'),
|
| 59 |
+
'comment_body': comment['data'].get('body'),
|
| 60 |
+
'comment_score': comment['data'].get('score', 0),
|
| 61 |
+
'comment_created_utc': datetime.fromtimestamp(comment['data'].get('created_utc', 0)),
|
| 62 |
+
'post_url': post_info['url'],
|
| 63 |
+
'comment_url': f"https://www.reddit.com{post_info['permalink']}{comment['data'].get('id')}",
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
def fetch_top_comments(post_df, num_comments=2):
|
| 67 |
+
"""
|
| 68 |
+
Fetch top comments for each post in the dataframe, sorted by upvotes
|
| 69 |
+
"""
|
| 70 |
+
all_comments = []
|
| 71 |
+
total_posts = len(post_df)
|
| 72 |
+
headers = {
|
| 73 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
print(f"\nFetching top {num_comments} most upvoted comments for {total_posts} posts...")
|
| 77 |
+
|
| 78 |
+
for idx, post in post_df.iterrows():
|
| 79 |
+
print(f"\nProcessing post {idx + 1}/{total_posts}")
|
| 80 |
+
print(f"Title: {post['title'][:100]}...")
|
| 81 |
+
print(f"Post Score: {post['score']}, Number of Comments: {post['num_comments']}")
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
json_url = post['permalink'].replace('https://www.reddit.com', '') + '.json'
|
| 85 |
+
url = f'https://www.reddit.com{json_url}'
|
| 86 |
+
|
| 87 |
+
response = requests.get(url, headers=headers)
|
| 88 |
+
response.raise_for_status()
|
| 89 |
+
data = response.json()
|
| 90 |
+
|
| 91 |
+
if len(data) > 1:
|
| 92 |
+
comments_data = data[1]['data']['children']
|
| 93 |
+
|
| 94 |
+
# Filter out non-comment entries and extract scores
|
| 95 |
+
valid_comments = [
|
| 96 |
+
comment for comment in comments_data
|
| 97 |
+
if comment['kind'] == 't1' and comment['data'].get('score') is not None
|
| 98 |
+
]
|
| 99 |
+
|
| 100 |
+
# Sort comments by score (upvotes) in descending order
|
| 101 |
+
sorted_comments = sorted(
|
| 102 |
+
valid_comments,
|
| 103 |
+
key=lambda x: x['data'].get('score', 0),
|
| 104 |
+
reverse=True
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Take only the top N comments
|
| 108 |
+
top_comments = sorted_comments[:num_comments]
|
| 109 |
+
|
| 110 |
+
# Print comment scores for verification
|
| 111 |
+
print("\nTop comment scores for this post:")
|
| 112 |
+
for i, comment in enumerate(top_comments, 1):
|
| 113 |
+
score = comment['data'].get('score', 0)
|
| 114 |
+
print(f"Comment {i}: {score} upvotes")
|
| 115 |
+
|
| 116 |
+
# Add to main list
|
| 117 |
+
for comment in top_comments:
|
| 118 |
+
all_comments.append(extract_comment_data(comment, post))
|
| 119 |
+
|
| 120 |
+
time.sleep(2)
|
| 121 |
+
|
| 122 |
+
except requests.exceptions.RequestException as e:
|
| 123 |
+
print(f"Error fetching comments for post {idx + 1}: {e}")
|
| 124 |
+
continue
|
| 125 |
+
|
| 126 |
+
# Create DataFrame and sort
|
| 127 |
+
comments_df = pd.DataFrame(all_comments)
|
| 128 |
+
|
| 129 |
+
if not comments_df.empty:
|
| 130 |
+
# Verify sorting by showing top comments for each post
|
| 131 |
+
print("\nVerification of comment sorting:")
|
| 132 |
+
for post_title in comments_df['post_title'].unique():
|
| 133 |
+
post_comments = comments_df[comments_df['post_title'] == post_title]
|
| 134 |
+
print(f"\nPost: {post_title[:100]}...")
|
| 135 |
+
print("Comment scores:", post_comments['comment_score'].tolist())
|
| 136 |
+
|
| 137 |
+
return comments_df
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def fetch_subreddits(limit=10, min_subscribers=1000):
|
| 141 |
+
"""
|
| 142 |
+
Fetch subreddits from Reddit
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
limit (int): Number of subreddits to fetch
|
| 146 |
+
min_subscribers (int): Minimum number of subscribers required
|
| 147 |
+
"""
|
| 148 |
+
headers = {
|
| 149 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 150 |
+
}
|
| 151 |
+
subreddits_data = []
|
| 152 |
+
after = None
|
| 153 |
+
|
| 154 |
+
while len(subreddits_data) < limit:
|
| 155 |
+
try:
|
| 156 |
+
url = f'https://www.reddit.com/subreddits/popular.json?limit=100'
|
| 157 |
+
if after:
|
| 158 |
+
url += f'&after={after}'
|
| 159 |
+
|
| 160 |
+
print(f"Fetching subreddits... Current count: {len(subreddits_data)}")
|
| 161 |
+
response = requests.get(url, headers=headers)
|
| 162 |
+
response.raise_for_status()
|
| 163 |
+
data = response.json()
|
| 164 |
+
|
| 165 |
+
for subreddit in data['data']['children']:
|
| 166 |
+
subreddit_data = subreddit['data']
|
| 167 |
+
|
| 168 |
+
if subreddit_data.get('subscribers', 0) >= min_subscribers:
|
| 169 |
+
sub_info = {
|
| 170 |
+
'display_name': subreddit_data.get('display_name'),
|
| 171 |
+
'display_name_prefixed': subreddit_data.get('display_name_prefixed'),
|
| 172 |
+
'title': subreddit_data.get('title'),
|
| 173 |
+
'subscribers': subreddit_data.get('subscribers', 0),
|
| 174 |
+
'active_users': subreddit_data.get('active_user_count', 0),
|
| 175 |
+
'created_utc': datetime.fromtimestamp(subreddit_data.get('created_utc', 0)),
|
| 176 |
+
'description': subreddit_data.get('description'),
|
| 177 |
+
'subreddit_type': subreddit_data.get('subreddit_type'),
|
| 178 |
+
'over18': subreddit_data.get('over18', False),
|
| 179 |
+
'url': f"https://www.reddit.com/r/{subreddit_data.get('display_name')}/"
|
| 180 |
+
}
|
| 181 |
+
subreddits_data.append(sub_info)
|
| 182 |
+
|
| 183 |
+
after = data['data'].get('after')
|
| 184 |
+
if not after:
|
| 185 |
+
print("Reached end of listings")
|
| 186 |
+
break
|
| 187 |
+
|
| 188 |
+
time.sleep(2)
|
| 189 |
+
|
| 190 |
+
except requests.exceptions.RequestException as e:
|
| 191 |
+
print(f"Error fetching data: {e}")
|
| 192 |
+
break
|
| 193 |
+
|
| 194 |
+
return pd.DataFrame(subreddits_data)
|
| 195 |
+
|
| 196 |
+
def fetch_top_posts(subreddit, limit=5):
|
| 197 |
+
"""
|
| 198 |
+
Fetch top posts from a subreddit using Reddit's JSON API
|
| 199 |
+
|
| 200 |
+
Args:
|
| 201 |
+
subreddit (str): Name of the subreddit without the 'r/'
|
| 202 |
+
limit (int): Maximum number of posts to fetch
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
list: List of post dictionaries
|
| 206 |
+
"""
|
| 207 |
+
posts_data = []
|
| 208 |
+
url = f'https://www.reddit.com/r/{subreddit}/top.json?t=all&limit={limit}'
|
| 209 |
+
headers = {
|
| 210 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
try:
|
| 214 |
+
response = requests.get(url, headers=headers)
|
| 215 |
+
response.raise_for_status()
|
| 216 |
+
data = response.json()
|
| 217 |
+
|
| 218 |
+
for post in data['data']['children']:
|
| 219 |
+
post_data = post['data']
|
| 220 |
+
posts_data.append({
|
| 221 |
+
'subreddit': subreddit,
|
| 222 |
+
'title': post_data.get('title'),
|
| 223 |
+
'score': post_data.get('score'),
|
| 224 |
+
'num_comments': post_data.get('num_comments'),
|
| 225 |
+
'created_utc': datetime.fromtimestamp(post_data.get('created_utc', 0)),
|
| 226 |
+
'url': post_data.get('url'),
|
| 227 |
+
'permalink': 'https://www.reddit.com' + post_data.get('permalink', '')
|
| 228 |
+
})
|
| 229 |
+
|
| 230 |
+
time.sleep(2)
|
| 231 |
+
|
| 232 |
+
except requests.exceptions.RequestException as e:
|
| 233 |
+
print(f"Error fetching posts from r/{subreddit}: {e}")
|
| 234 |
+
|
| 235 |
+
return pd.DataFrame(posts_data)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def show_dataframe(subreddit):
|
| 239 |
+
# Fetch top posts
|
| 240 |
+
top_posts = fetch_top_posts(subreddit)
|
| 241 |
+
|
| 242 |
+
# Fetch top comments for these posts
|
| 243 |
+
data_to_analyze = fetch_top_comments(top_posts)
|
| 244 |
+
|
| 245 |
+
# Process and analyze each comment
|
| 246 |
+
responses = []
|
| 247 |
+
for _, row in data_to_analyze.iterrows():
|
| 248 |
+
print(f"{_} done")
|
| 249 |
+
responses.append(process(row))
|
| 250 |
+
|
| 251 |
+
# Add analysis to the dataframe
|
| 252 |
+
data_to_analyze['analysis'] = responses
|
| 253 |
+
|
| 254 |
+
# Store in global storage for quick access
|
| 255 |
+
GLOBAL_ANALYSIS_STORAGE['subreddit'] = subreddit
|
| 256 |
+
GLOBAL_ANALYSIS_STORAGE['data'] = data_to_analyze
|
| 257 |
+
|
| 258 |
+
return data_to_analyze
|
| 259 |
+
|
| 260 |
+
def launch_interface():
|
| 261 |
+
# Fetch list of subreddits for user to choose from
|
| 262 |
+
sub_reddits = fetch_subreddits()
|
| 263 |
+
subreddit_list = sub_reddits["display_name"].tolist()
|
| 264 |
+
|
| 265 |
+
# Create Gradio Blocks for more flexible interface
|
| 266 |
+
with gr.Blocks() as demo:
|
| 267 |
+
# Title and description
|
| 268 |
+
gr.Markdown("# Reddit Business Problem Analyzer")
|
| 269 |
+
gr.Markdown("Discover potential business opportunities from Reddit discussions")
|
| 270 |
+
|
| 271 |
+
# Subreddit selection
|
| 272 |
+
subreddit_dropdown = gr.Dropdown(
|
| 273 |
+
choices=subreddit_list,
|
| 274 |
+
label="Select Subreddit",
|
| 275 |
+
info="Choose a subreddit to analyze"
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# Outputs
|
| 279 |
+
with gr.Row():
|
| 280 |
+
with gr.Column():
|
| 281 |
+
# Overall Analysis Section
|
| 282 |
+
gr.Markdown("## Overall Analysis")
|
| 283 |
+
# overall_analysis = gr.Textbox(
|
| 284 |
+
# label="Aggregated Business Insights",
|
| 285 |
+
# interactive=False,
|
| 286 |
+
# lines=5
|
| 287 |
+
# )
|
| 288 |
+
|
| 289 |
+
# Results Table
|
| 290 |
+
results_table = gr.Dataframe(
|
| 291 |
+
label="Analysis Results",
|
| 292 |
+
headers=["Index", "Post Title", "Comment", "Analysis"],
|
| 293 |
+
interactive=False
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# Row Selection
|
| 297 |
+
row_index = gr.Number(
|
| 298 |
+
label="Select Row Index for Detailed View",
|
| 299 |
+
precision=0
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
with gr.Column():
|
| 303 |
+
# Detailed Post Analysis
|
| 304 |
+
gr.Markdown("## Detailed Post Analysis")
|
| 305 |
+
detailed_analysis = gr.Markdown(
|
| 306 |
+
label="Detailed Insights"
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
# Function to update posts when subreddit is selected
|
| 310 |
+
def update_posts(subreddit):
|
| 311 |
+
# Fetch and analyze data
|
| 312 |
+
data_to_analyze = show_dataframe(subreddit)
|
| 313 |
+
|
| 314 |
+
# Prepare table data
|
| 315 |
+
table_data = data_to_analyze[['post_title', 'comment_body', 'analysis']].reset_index()
|
| 316 |
+
table_data.columns = ['Index', 'Post Title', 'Comment', 'Analysis']
|
| 317 |
+
|
| 318 |
+
return table_data, None
|
| 319 |
+
|
| 320 |
+
# Function to show detailed analysis for a specific row
|
| 321 |
+
def show_row_details(row_index):
|
| 322 |
+
# Ensure we have data loaded
|
| 323 |
+
if GLOBAL_ANALYSIS_STORAGE['data'] is None:
|
| 324 |
+
return "Please select a subreddit first."
|
| 325 |
+
|
| 326 |
+
try:
|
| 327 |
+
# Convert to integer and subtract 1 (since index is 0-based)
|
| 328 |
+
row_index = int(row_index)
|
| 329 |
+
|
| 330 |
+
# Retrieve the specific row
|
| 331 |
+
row_data = GLOBAL_ANALYSIS_STORAGE['data'].loc[row_index]
|
| 332 |
+
|
| 333 |
+
# Format detailed view
|
| 334 |
+
detailed_view = f"""
|
| 335 |
+
### Post Details
|
| 336 |
+
**Title:** {row_data.get('post_title', 'N/A')}
|
| 337 |
+
|
| 338 |
+
**Comment:** {row_data.get('comment_body', 'N/A')}
|
| 339 |
+
|
| 340 |
+
**Comment Score:** {row_data.get('comment_score', 'N/A')}
|
| 341 |
+
|
| 342 |
+
**Analysis:** {row_data.get('analysis', 'No analysis available')}
|
| 343 |
+
|
| 344 |
+
**Post URL:** {row_data.get('post_url', 'N/A')}
|
| 345 |
+
|
| 346 |
+
**Comment URL:** {row_data.get('comment_url', 'N/A')}
|
| 347 |
+
"""
|
| 348 |
+
|
| 349 |
+
return detailed_view
|
| 350 |
+
|
| 351 |
+
except (KeyError, ValueError, TypeError) as e:
|
| 352 |
+
return f"Error retrieving row details: {str(e)}"
|
| 353 |
+
|
| 354 |
+
# Event Listeners
|
| 355 |
+
subreddit_dropdown.change(
|
| 356 |
+
fn=update_posts,
|
| 357 |
+
inputs=subreddit_dropdown,
|
| 358 |
+
outputs=[results_table, detailed_analysis]
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
row_index.change(
|
| 362 |
+
fn=show_row_details,
|
| 363 |
+
inputs=row_index,
|
| 364 |
+
outputs=detailed_analysis
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
return demo
|
| 368 |
+
|
| 369 |
+
# Launch the interface
|
| 370 |
+
if __name__ == "__main__":
|
| 371 |
+
interface = launch_interface()
|
| 372 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==23.2.1
|
| 2 |
+
annotated-types==0.7.0
|
| 3 |
+
anyio==4.6.2.post1
|
| 4 |
+
appnope==0.1.4
|
| 5 |
+
asttokens==2.4.1
|
| 6 |
+
audioop-lts==0.2.1
|
| 7 |
+
certifi==2024.8.30
|
| 8 |
+
charset-normalizer==3.4.0
|
| 9 |
+
click==8.1.7
|
| 10 |
+
comm==0.2.2
|
| 11 |
+
debugpy==1.8.7
|
| 12 |
+
decorator==5.1.1
|
| 13 |
+
distro==1.9.0
|
| 14 |
+
executing==2.1.0
|
| 15 |
+
fastapi==0.115.4
|
| 16 |
+
ffmpy==0.4.0
|
| 17 |
+
filelock==3.16.1
|
| 18 |
+
fsspec==2024.10.0
|
| 19 |
+
gradio==5.4.0
|
| 20 |
+
gradio_client==1.4.2
|
| 21 |
+
groq==0.13.0
|
| 22 |
+
h11==0.14.0
|
| 23 |
+
httpcore==1.0.6
|
| 24 |
+
httpx==0.27.2
|
| 25 |
+
huggingface-hub==0.26.2
|
| 26 |
+
idna==3.10
|
| 27 |
+
ipykernel==6.29.5
|
| 28 |
+
ipython==8.29.0
|
| 29 |
+
jedi==0.19.1
|
| 30 |
+
Jinja2==3.1.4
|
| 31 |
+
jupyter_client==8.6.3
|
| 32 |
+
jupyter_core==5.7.2
|
| 33 |
+
markdown-it-py==3.0.0
|
| 34 |
+
MarkupSafe==2.1.5
|
| 35 |
+
matplotlib-inline==0.1.7
|
| 36 |
+
mdurl==0.1.2
|
| 37 |
+
nest-asyncio==1.6.0
|
| 38 |
+
numpy==2.1.2
|
| 39 |
+
ollama==0.3.3
|
| 40 |
+
orjson==3.10.10
|
| 41 |
+
packaging==24.1
|
| 42 |
+
pandas==2.2.3
|
| 43 |
+
parso==0.8.4
|
| 44 |
+
pexpect==4.9.0
|
| 45 |
+
pillow==11.0.0
|
| 46 |
+
platformdirs==4.3.6
|
| 47 |
+
prompt_toolkit==3.0.48
|
| 48 |
+
psutil==6.1.0
|
| 49 |
+
ptyprocess==0.7.0
|
| 50 |
+
pure_eval==0.2.3
|
| 51 |
+
pydantic==2.9.2
|
| 52 |
+
pydantic_core==2.23.4
|
| 53 |
+
pydub==0.25.1
|
| 54 |
+
Pygments==2.18.0
|
| 55 |
+
python-dateutil==2.9.0.post0
|
| 56 |
+
python-dotenv==1.0.1
|
| 57 |
+
python-multipart==0.0.12
|
| 58 |
+
pytz==2024.2
|
| 59 |
+
PyYAML==6.0.2
|
| 60 |
+
pyzmq==26.2.0
|
| 61 |
+
requests==2.32.3
|
| 62 |
+
rich==13.9.4
|
| 63 |
+
ruff==0.7.2
|
| 64 |
+
safehttpx==0.1.1
|
| 65 |
+
semantic-version==2.10.0
|
| 66 |
+
shellingham==1.5.4
|
| 67 |
+
six==1.16.0
|
| 68 |
+
sniffio==1.3.1
|
| 69 |
+
stack-data==0.6.3
|
| 70 |
+
starlette==0.41.2
|
| 71 |
+
tomlkit==0.12.0
|
| 72 |
+
tornado==6.4.1
|
| 73 |
+
tqdm==4.66.6
|
| 74 |
+
traitlets==5.14.3
|
| 75 |
+
typer==0.12.5
|
| 76 |
+
typing_extensions==4.12.2
|
| 77 |
+
tzdata==2024.2
|
| 78 |
+
urllib3==2.2.3
|
| 79 |
+
uvicorn==0.32.0
|
| 80 |
+
wcwidth==0.2.13
|
| 81 |
+
websockets==12.0
|