Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
for message in client.chat_completion(
|
28 |
-
messages,
|
29 |
-
max_tokens=max_tokens,
|
30 |
-
stream=True,
|
31 |
-
temperature=temperature,
|
32 |
-
top_p=top_p,
|
33 |
-
):
|
34 |
-
choices = message.choices
|
35 |
-
token = ""
|
36 |
-
if len(choices) and choices[0].delta.content:
|
37 |
-
token = choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
chatbot = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
type="messages",
|
49 |
-
additional_inputs=[
|
50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
53 |
-
gr.Slider(
|
54 |
-
minimum=0.1,
|
55 |
-
maximum=1.0,
|
56 |
-
value=0.95,
|
57 |
-
step=0.05,
|
58 |
-
label="Top-p (nucleus sampling)",
|
59 |
-
),
|
60 |
-
],
|
61 |
)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain.text_splitter import CharacterTextSplitter
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.chains import ConversationalRetrievalChain
|
6 |
+
from langchain.llms import HuggingFaceHub
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
|
9 |
+
# 1. Load your PDF (upload yourfile.pdf in the Files tab)
|
10 |
+
loader = PyPDFLoader("yourfile.pdf")
|
11 |
+
documents = loader.load()
|
12 |
+
|
13 |
+
# 2. Split into chunks
|
14 |
+
text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=100)
|
15 |
+
texts = text_splitter.split_documents(documents)
|
16 |
+
|
17 |
+
# 3. Create embeddings + vector DB
|
18 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
19 |
+
db = FAISS.from_documents(texts, embeddings)
|
20 |
+
|
21 |
+
# 4. Build retriever-based chatbot
|
22 |
+
retriever = db.as_retriever(search_kwargs={"k": 3})
|
23 |
+
|
24 |
+
qa = ConversationalRetrievalChain.from_llm(
|
25 |
+
HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":0}),
|
26 |
+
retriever=retriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
|
29 |
+
chat_history = []
|
30 |
+
|
31 |
+
def respond(message, history):
|
32 |
+
global chat_history
|
33 |
+
result = qa({"question": message, "chat_history": chat_history})
|
34 |
+
chat_history.append((message, result["answer"]))
|
35 |
+
return result["answer"]
|
36 |
|
37 |
+
# 5. Simple Gradio UI (no login, no upload)
|
38 |
+
chatbot = gr.ChatInterface(respond)
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
+
chatbot.launch()
|