hema05core commited on
Commit
6499ac7
·
verified ·
1 Parent(s): 913af7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -64
app.py CHANGED
@@ -1,70 +1,41 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
 
 
 
67
 
 
 
68
 
69
  if __name__ == "__main__":
70
- demo.launch()
 
1
  import gradio as gr
2
+ from langchain.text_splitter import CharacterTextSplitter
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.chains import ConversationalRetrievalChain
6
+ from langchain.llms import HuggingFaceHub
7
+ from langchain.document_loaders import PyPDFLoader
8
+
9
+ # 1. Load your PDF (upload yourfile.pdf in the Files tab)
10
+ loader = PyPDFLoader("yourfile.pdf")
11
+ documents = loader.load()
12
+
13
+ # 2. Split into chunks
14
+ text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=100)
15
+ texts = text_splitter.split_documents(documents)
16
+
17
+ # 3. Create embeddings + vector DB
18
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
19
+ db = FAISS.from_documents(texts, embeddings)
20
+
21
+ # 4. Build retriever-based chatbot
22
+ retriever = db.as_retriever(search_kwargs={"k": 3})
23
+
24
+ qa = ConversationalRetrievalChain.from_llm(
25
+ HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":0}),
26
+ retriever=retriever
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  )
28
 
29
+ chat_history = []
30
+
31
+ def respond(message, history):
32
+ global chat_history
33
+ result = qa({"question": message, "chat_history": chat_history})
34
+ chat_history.append((message, result["answer"]))
35
+ return result["answer"]
36
 
37
+ # 5. Simple Gradio UI (no login, no upload)
38
+ chatbot = gr.ChatInterface(respond)
39
 
40
  if __name__ == "__main__":
41
+ chatbot.launch()