Spaces:
Runtime error
Runtime error
Upload with huggingface_hub
Browse files- DESCRIPTION.md +1 -0
- README.md +1 -1
- app.py +0 -12
DESCRIPTION.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
This demo built with Blocks generates 9 plots based on the input.
|
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
|
2 |
---
|
3 |
title: clustering
|
4 |
-
emoji:
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
|
|
1 |
|
2 |
---
|
3 |
title: clustering
|
4 |
+
emoji: 🔥
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
app.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
# URL: https://huggingface.co/spaces/gradio/clustering
|
2 |
-
# DESCRIPTION: This demo built with Blocks generates 9 plots based on the input.
|
3 |
-
# imports
|
4 |
import gradio as gr
|
5 |
import math
|
6 |
from functools import partial
|
@@ -14,7 +11,6 @@ from sklearn.mixture import GaussianMixture
|
|
14 |
from sklearn.neighbors import kneighbors_graph
|
15 |
from sklearn.preprocessing import StandardScaler
|
16 |
|
17 |
-
# loading models and setting up
|
18 |
plt.style.use('seaborn')
|
19 |
SEED = 0
|
20 |
MAX_CLUSTERS = 10
|
@@ -27,12 +23,10 @@ COLORS = [
|
|
27 |
assert len(COLORS) >= MAX_CLUSTERS, "Not enough different colors for all clusters"
|
28 |
np.random.seed(SEED)
|
29 |
|
30 |
-
# defining core fns
|
31 |
|
32 |
def normalize(X):
|
33 |
return StandardScaler().fit_transform(X)
|
34 |
|
35 |
-
|
36 |
def get_regular(n_clusters):
|
37 |
# spiral pattern
|
38 |
centers = [
|
@@ -254,14 +248,10 @@ def iter_grid(n_rows, n_cols):
|
|
254 |
with gr.Column():
|
255 |
yield
|
256 |
|
257 |
-
# starting a block
|
258 |
-
|
259 |
with gr.Blocks(title=title) as demo:
|
260 |
-
# adding text as HTML and Markdown
|
261 |
gr.HTML(f"<b>{title}</b>")
|
262 |
gr.Markdown(description)
|
263 |
|
264 |
-
# setting up the inputs
|
265 |
input_models = list(MODEL_MAPPING)
|
266 |
input_data = gr.Radio(
|
267 |
list(DATA_MAPPING),
|
@@ -282,12 +272,10 @@ with gr.Blocks(title=title) as demo:
|
|
282 |
break
|
283 |
|
284 |
input_model = input_models[counter]
|
285 |
-
# defining the output
|
286 |
plot = gr.Plot(label=input_model)
|
287 |
fn = partial(cluster, clustering_algorithm=input_model)
|
288 |
input_data.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
289 |
input_n_clusters.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
290 |
counter += 1
|
291 |
|
292 |
-
# launch
|
293 |
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import math
|
3 |
from functools import partial
|
|
|
11 |
from sklearn.neighbors import kneighbors_graph
|
12 |
from sklearn.preprocessing import StandardScaler
|
13 |
|
|
|
14 |
plt.style.use('seaborn')
|
15 |
SEED = 0
|
16 |
MAX_CLUSTERS = 10
|
|
|
23 |
assert len(COLORS) >= MAX_CLUSTERS, "Not enough different colors for all clusters"
|
24 |
np.random.seed(SEED)
|
25 |
|
|
|
26 |
|
27 |
def normalize(X):
|
28 |
return StandardScaler().fit_transform(X)
|
29 |
|
|
|
30 |
def get_regular(n_clusters):
|
31 |
# spiral pattern
|
32 |
centers = [
|
|
|
248 |
with gr.Column():
|
249 |
yield
|
250 |
|
|
|
|
|
251 |
with gr.Blocks(title=title) as demo:
|
|
|
252 |
gr.HTML(f"<b>{title}</b>")
|
253 |
gr.Markdown(description)
|
254 |
|
|
|
255 |
input_models = list(MODEL_MAPPING)
|
256 |
input_data = gr.Radio(
|
257 |
list(DATA_MAPPING),
|
|
|
272 |
break
|
273 |
|
274 |
input_model = input_models[counter]
|
|
|
275 |
plot = gr.Plot(label=input_model)
|
276 |
fn = partial(cluster, clustering_algorithm=input_model)
|
277 |
input_data.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
278 |
input_n_clusters.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
279 |
counter += 1
|
280 |
|
|
|
281 |
demo.launch()
|