Spaces:
Build error
Build error
grimbano
commited on
Commit
·
da50ab5
1
Parent(s):
d151d1e
feat(init): :tada: Initial commit pushing up app data
Browse files- Dockerfile +1 -1
- embeddings/pokemon_embeddings_pkmn.pkl +3 -0
- requirements.txt +68 -3
- src/similarity.py +284 -0
- src/streamlit_app.py +111 -38
Dockerfile
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
FROM python:3.
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
embeddings/pokemon_embeddings_pkmn.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd76097a052a82770458398d85021a58e2d511e916be96219099070a2f4af247
|
| 3 |
+
size 7265971
|
requirements.txt
CHANGED
|
@@ -1,3 +1,68 @@
|
|
| 1 |
-
altair
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==5.5.0
|
| 2 |
+
annotated-types==0.7.0
|
| 3 |
+
anyio==4.9.0
|
| 4 |
+
attrs==25.3.0
|
| 5 |
+
blinker==1.9.0
|
| 6 |
+
cachetools==5.5.2
|
| 7 |
+
certifi==2025.4.26
|
| 8 |
+
charset-normalizer==3.4.2
|
| 9 |
+
click==8.2.1
|
| 10 |
+
colorama==0.4.6
|
| 11 |
+
fastapi==0.109.2
|
| 12 |
+
filelock==3.18.0
|
| 13 |
+
fsspec==2025.5.1
|
| 14 |
+
gitdb==4.0.12
|
| 15 |
+
gitpython==3.1.44
|
| 16 |
+
h11==0.16.0
|
| 17 |
+
huggingface-hub==0.32.2
|
| 18 |
+
idna==3.10
|
| 19 |
+
jinja2==3.1.6
|
| 20 |
+
jsonschema==4.24.0
|
| 21 |
+
jsonschema-specifications==2025.4.1
|
| 22 |
+
markdown-it-py==3.0.0
|
| 23 |
+
markupsafe==3.0.2
|
| 24 |
+
mdurl==0.1.2
|
| 25 |
+
mpmath==1.3.0
|
| 26 |
+
narwhals==1.41.0
|
| 27 |
+
networkx==3.4.2
|
| 28 |
+
numpy==2.2.6
|
| 29 |
+
packaging==23.2
|
| 30 |
+
pandas==2.2.3
|
| 31 |
+
pillow==11.2.1
|
| 32 |
+
protobuf==4.25.8
|
| 33 |
+
pyarrow==20.0.0
|
| 34 |
+
pydantic==2.11.5
|
| 35 |
+
pydantic-core==2.33.2
|
| 36 |
+
pydeck==0.9.1
|
| 37 |
+
pygments==2.19.1
|
| 38 |
+
python-dateutil==2.9.0.post0
|
| 39 |
+
python-multipart==0.0.9
|
| 40 |
+
pytz==2025.2
|
| 41 |
+
pyyaml==6.0.2
|
| 42 |
+
referencing==0.36.2
|
| 43 |
+
regex==2024.11.6
|
| 44 |
+
requests==2.31.0
|
| 45 |
+
rich==13.9.4
|
| 46 |
+
rpds-py==0.25.1
|
| 47 |
+
safetensors==0.5.3
|
| 48 |
+
setuptools==69.2.0
|
| 49 |
+
six==1.17.0
|
| 50 |
+
smmap==5.0.2
|
| 51 |
+
sniffio==1.3.1
|
| 52 |
+
starlette==0.36.3
|
| 53 |
+
streamlit==1.32.0
|
| 54 |
+
sympy==1.14.0
|
| 55 |
+
tenacity==8.5.0
|
| 56 |
+
tokenizers==0.21.1
|
| 57 |
+
toml==0.10.2
|
| 58 |
+
torch==2.7.0
|
| 59 |
+
torchvision==0.22.0
|
| 60 |
+
tornado==6.5.1
|
| 61 |
+
tqdm==4.67.1
|
| 62 |
+
transformers==4.52.3
|
| 63 |
+
typing-extensions==4.13.2
|
| 64 |
+
typing-inspection==0.4.1
|
| 65 |
+
tzdata==2025.2
|
| 66 |
+
urllib3==2.4.0
|
| 67 |
+
uvicorn==0.27.1
|
| 68 |
+
watchdog==6.0.0
|
src/similarity.py
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pickle
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import io
|
| 5 |
+
import os
|
| 6 |
+
import requests
|
| 7 |
+
import base64
|
| 8 |
+
from collections import defaultdict
|
| 9 |
+
from transformers import ViTModel, ViTImageProcessor
|
| 10 |
+
|
| 11 |
+
import warnings
|
| 12 |
+
warnings.filterwarnings('ignore')
|
| 13 |
+
|
| 14 |
+
import logging
|
| 15 |
+
# logging.disable(logging.WARNING)
|
| 16 |
+
transformers_logger = logging.getLogger('transformers')
|
| 17 |
+
transformers_logger.setLevel(logging.ERROR)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Change current dir to the execution place
|
| 22 |
+
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
| 23 |
+
DB_PATH_STRUCTURE = 'embeddings/pokemon_embeddings_pkmn.pkl'
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# --- Device Selection ---
|
| 30 |
+
# Hint: Check for CUDA, MPS, or fallback to CPU
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# --- Load Pretrained Model ---
|
| 37 |
+
def get_model() -> ViTModel:
|
| 38 |
+
"""
|
| 39 |
+
TODO: Implement model loading
|
| 40 |
+
- Load a pretrained model (e.g., ResNet18)
|
| 41 |
+
- Remove the classification head
|
| 42 |
+
- Set the model to evaluation mode
|
| 43 |
+
- Move the model to the appropriate device
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
torch.nn.Module: The prepared model
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
model = ViTModel.from_pretrained('imjeffhi/pokemon_classifier').to(device)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
return model.eval()
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# --- Image Preprocessing ---
|
| 59 |
+
# TODO: Define your image transformation pipeline
|
| 60 |
+
# Hint: Consider resizing, normalization, and tensor conversion
|
| 61 |
+
transform = ViTImageProcessor.from_pretrained(get_model().name_or_path)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class PokemonSimilarity:
|
| 68 |
+
def __init__(self, suppress_init_logs: bool = True) -> None:
|
| 69 |
+
"""
|
| 70 |
+
TODO: Initialize the similarity engine
|
| 71 |
+
- Load the model
|
| 72 |
+
- Load the database of Pokemon embeddings
|
| 73 |
+
"""
|
| 74 |
+
self.original_transformers_level = transformers_logger.level
|
| 75 |
+
self.original_root_level = logging.root.level
|
| 76 |
+
|
| 77 |
+
if suppress_init_logs:
|
| 78 |
+
# Temporarily raise the logging level for transformers and root logger
|
| 79 |
+
# to silence startup messages during model/DB loading
|
| 80 |
+
transformers_logger.setLevel(logging.ERROR)
|
| 81 |
+
logging.root.setLevel(logging.WARNING) # Suppress INFO from other sources too
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
self.model = get_model()
|
| 85 |
+
self.db = self._load_db()
|
| 86 |
+
|
| 87 |
+
finally:
|
| 88 |
+
# Always restore original logging levels after initialization
|
| 89 |
+
transformers_logger.setLevel(self.original_transformers_level)
|
| 90 |
+
logging.root.setLevel(self.original_root_level)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def _load_db(self) -> dict | None:
|
| 95 |
+
"""
|
| 96 |
+
TODO: Implement database loading
|
| 97 |
+
- Look for the embeddings file in different possible locations
|
| 98 |
+
- Load the pickle file containing Pokemon embeddings
|
| 99 |
+
- Handle cases where the file is not found
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
list: List of dictionaries containing Pokemon embeddings and labels
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
db_path = None
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
|
| 109 |
+
if os.path.exists(DB_PATH_STRUCTURE):
|
| 110 |
+
db_path = DB_PATH_STRUCTURE
|
| 111 |
+
|
| 112 |
+
if os.path.exists(f'../{DB_PATH_STRUCTURE}'):
|
| 113 |
+
db_path = f'../{DB_PATH_STRUCTURE}'
|
| 114 |
+
|
| 115 |
+
with open(db_path, 'rb') as f:
|
| 116 |
+
# Load the dictionary from the file
|
| 117 |
+
embeddings = pickle.load(f)
|
| 118 |
+
|
| 119 |
+
return embeddings
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
raise os.error(f'Error loading embeddings database: {e}')
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def load_image(self, image_input) -> Image.Image:
|
| 127 |
+
"""
|
| 128 |
+
Handle different input formats:
|
| 129 |
+
- URL strings
|
| 130 |
+
- Base64 encoded image strings
|
| 131 |
+
- Bytes objects
|
| 132 |
+
- PIL Image objects
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
image_input: Image in various formats
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
PIL.Image: The loaded image in RGB format
|
| 139 |
+
"""
|
| 140 |
+
if isinstance(image_input, Image.Image):
|
| 141 |
+
# Already a PIL Image object
|
| 142 |
+
return image_input.convert('RGB')
|
| 143 |
+
|
| 144 |
+
elif isinstance(image_input, str):
|
| 145 |
+
# Check if it's a local file path
|
| 146 |
+
if os.path.exists(image_input):
|
| 147 |
+
try:
|
| 148 |
+
return Image.open(image_input).convert('RGB')
|
| 149 |
+
|
| 150 |
+
except Image.UnidentifiedImageError as e:
|
| 151 |
+
raise Image.UnidentifiedImageError(f"Cannot identify image file at path '{image_input}': {e}")
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
raise ValueError(f"Error loading image from local file path '{image_input}': {e}")
|
| 155 |
+
|
| 156 |
+
# Check if it's a URL
|
| 157 |
+
elif image_input.startswith(('http://', 'https://')):
|
| 158 |
+
try:
|
| 159 |
+
response = requests.get(image_input, stream=True)
|
| 160 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 161 |
+
return Image.open(io.BytesIO(response.content)).convert('RGB')
|
| 162 |
+
|
| 163 |
+
except requests.RequestException as e:
|
| 164 |
+
raise requests.RequestException(f"Error loading image from URL '{image_input}': {e}")
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
raise ValueError(f"Error processing image from URL '{image_input}': {e}")
|
| 168 |
+
|
| 169 |
+
# Check if it's a Base64 encoded string
|
| 170 |
+
try:
|
| 171 |
+
# Base64 strings often include a prefix like "data:image/jpeg;base64,"
|
| 172 |
+
# We need to remove that prefix before decoding.
|
| 173 |
+
if ',' in image_input:
|
| 174 |
+
_, base64_data = image_input.split(',', 1)
|
| 175 |
+
else:
|
| 176 |
+
base64_data = image_input
|
| 177 |
+
|
| 178 |
+
decoded_image = base64.b64decode(base64_data)
|
| 179 |
+
return Image.open(io.BytesIO(decoded_image)).convert('RGB')
|
| 180 |
+
|
| 181 |
+
except (base64.binascii.Error, ValueError) as e:
|
| 182 |
+
# If it's not a valid Base64, it might just be an unsupported string
|
| 183 |
+
# We'll let the final ValueError catch it if no other type matches.
|
| 184 |
+
pass # Continue to check other types or raise final error
|
| 185 |
+
|
| 186 |
+
elif isinstance(image_input, bytes):
|
| 187 |
+
# Bytes object
|
| 188 |
+
try:
|
| 189 |
+
return Image.open(io.BytesIO(image_input)).convert('RGB')
|
| 190 |
+
|
| 191 |
+
except Exception as e:
|
| 192 |
+
raise ValueError(f'Error loading image from bytes object: {e}')
|
| 193 |
+
|
| 194 |
+
raise ValueError(f'Unsupported image input format: {type(image_input)}. Expected URL, Base64 string, bytes, or PIL Image.')
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def get_embedding(self, image) -> torch.Tensor:
|
| 199 |
+
"""
|
| 200 |
+
Generate a feature vector for the input image using the model
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
image (PIL.Image): Input image to generate embedding for
|
| 204 |
+
|
| 205 |
+
Returns:
|
| 206 |
+
numpy.ndarray: The image embedding
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
inputs = transform(images=image, return_tensors="pt").to(device)
|
| 210 |
+
|
| 211 |
+
last_hidden_state = self.model(**inputs).last_hidden_state
|
| 212 |
+
|
| 213 |
+
return last_hidden_state.reshape(last_hidden_state.shape[0], -1)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def cosine_similarity(self, a, b) -> float:
|
| 217 |
+
"""
|
| 218 |
+
Calculate the cosine similarity between two vectors
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
a: First vector
|
| 222 |
+
b: Second vector
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
float: Cosine similarity score
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
return float(torch.nn.functional.cosine_similarity(a, b, dim=1))
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def find_closest_pokemon(self, image_input):
|
| 232 |
+
"""
|
| 233 |
+
1. Load the input image
|
| 234 |
+
2. Generate its embedding
|
| 235 |
+
3. Compare with all Pokemon embeddings in the database
|
| 236 |
+
4. Return the name of the most similar Pokemon
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
image_input: Image in various formats (URL, base64, bytes, PIL Image)
|
| 240 |
+
|
| 241 |
+
Returns:
|
| 242 |
+
str: Name of the most similar Pokemon
|
| 243 |
+
"""
|
| 244 |
+
|
| 245 |
+
# Load the input_image
|
| 246 |
+
image = self.load_image(image_input)
|
| 247 |
+
|
| 248 |
+
# Generate embedding for the input image
|
| 249 |
+
input_emb = self.get_embedding(image)
|
| 250 |
+
|
| 251 |
+
# Compute similarities with all database entries
|
| 252 |
+
similarities = []
|
| 253 |
+
for label, emb_list in self.db.items():
|
| 254 |
+
for emb in emb_list:
|
| 255 |
+
similarities.append((
|
| 256 |
+
label,
|
| 257 |
+
self.cosine_similarity(input_emb, emb)
|
| 258 |
+
))
|
| 259 |
+
|
| 260 |
+
# Sort by similarity, descending
|
| 261 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 262 |
+
|
| 263 |
+
# Majority voting
|
| 264 |
+
data = lambda: defaultdict(float)
|
| 265 |
+
summary = defaultdict(data)
|
| 266 |
+
for label, similarity in similarities[:5]:
|
| 267 |
+
summary[label]['votes'] += 1
|
| 268 |
+
summary[label]['max_sim'] = max(summary[label]['max_sim'], similarity)
|
| 269 |
+
|
| 270 |
+
# Sort by votes, descending. In draw case prior max_similarity
|
| 271 |
+
sorted_votes = [(label, data['votes'], data['max_sim']) for label, data in summary.items()]
|
| 272 |
+
sorted_votes.sort(key=lambda x: (x[1], x[2]), reverse=True)
|
| 273 |
+
|
| 274 |
+
return sorted_votes[0][0]
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
if __name__ == "__main__":
|
| 281 |
+
similarity_engine = PokemonSimilarity()
|
| 282 |
+
print(similarity_engine.find_closest_pokemon('https://alfabetajuega.com/hero/2019/03/Squirtle-Looking-Happy.jpg?width=1200&aspect_ratio=16:9'))
|
| 283 |
+
# print(similarity_engine.find_closest_pokemon(r'C:\python\intro_deep_learning\hackathon\solutions\grupo_delante\data\testing\charmander\charmander.jpeg'))
|
| 284 |
+
|
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,113 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from similarity import PokemonSimilarity
|
| 4 |
+
import logging
|
| 5 |
|
| 6 |
+
|
| 7 |
+
INPUT_UPLOAD = 'upload'
|
| 8 |
+
INPUT_URL = 'url'
|
| 9 |
+
|
| 10 |
+
# Configure logging
|
| 11 |
+
logging.basicConfig(
|
| 12 |
+
level=logging.INFO,
|
| 13 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 14 |
+
)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Set page config first
|
| 19 |
+
st.set_page_config(
|
| 20 |
+
page_title='Pokemon Similarity Finder',
|
| 21 |
+
page_icon='🎮',
|
| 22 |
+
layout='centered'
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Initialize the similarity engine
|
| 27 |
+
@st.cache_resource
|
| 28 |
+
def get_similarity_engine() -> PokemonSimilarity:
|
| 29 |
+
logger.info('Initializing similarity engine...')
|
| 30 |
+
engine = PokemonSimilarity()
|
| 31 |
+
logger.info('Similarity engine initialized successfully')
|
| 32 |
+
return engine
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
similarity_engine = get_similarity_engine()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Title and description
|
| 39 |
+
st.title('🎮 Pokemon Similarity Finder')
|
| 40 |
+
st.markdown("""
|
| 41 |
+
Upload an image of a Pokemon or provide an image URL and we'll find the closest match in our database!
|
| 42 |
+
""")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# --- Input Method Selection ---
|
| 46 |
+
input_method = st.radio(
|
| 47 |
+
'Choose input method:',
|
| 48 |
+
('Upload Image', 'Image URL'),
|
| 49 |
+
horizontal=True
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# --- Initialize variables for shared logic ---
|
| 54 |
+
input_type = None
|
| 55 |
+
image_to_process = None
|
| 56 |
+
# request_payload = None
|
| 57 |
+
# request_files = None
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
if input_method == 'Upload Image':
|
| 61 |
+
uploaded_file = st.file_uploader('Choose a Pokemon image...', type=['jpg', 'jpeg', 'png'])
|
| 62 |
+
|
| 63 |
+
if uploaded_file is not None:
|
| 64 |
+
logger.info(f'File uploaded: {uploaded_file.name}')
|
| 65 |
+
input_type = INPUT_UPLOAD
|
| 66 |
+
image_input = uploaded_file.getvalue()
|
| 67 |
+
image_to_process = Image.open(uploaded_file)
|
| 68 |
+
# request_files = {'file': (uploaded_file.name, uploaded_file.getvalue(), uploaded_file.type)}
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if input_method == 'Image URL':
|
| 72 |
+
image_url = st.text_input('Enter Image URL:')
|
| 73 |
+
|
| 74 |
+
if image_url:
|
| 75 |
+
logger.info(f'Image URL provided: {image_url}')
|
| 76 |
+
input_type = INPUT_URL
|
| 77 |
+
image_input = image_url
|
| 78 |
+
image_to_process = image_url
|
| 79 |
+
# request_payload = json.dumps({'url': image_url})
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
if image_to_process is not None:
|
| 84 |
+
try:
|
| 85 |
+
st.image(image_to_process, caption=f'Image from {input_type}', use_column_width=True)
|
| 86 |
+
logger.info(f'Successfully displayed {input_type} image')
|
| 87 |
+
|
| 88 |
+
except Exception as e:
|
| 89 |
+
logger.error(f'Error loading image: {str(e)}')
|
| 90 |
+
st.error(f'❌ Error loading image: {str(e)}')
|
| 91 |
+
st.info('Please make sure you have uploaded a valid image file.')
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# Add a button to trigger the similarity search
|
| 95 |
+
if st.button('Find Similar Pokemon', use_container_width=True):
|
| 96 |
+
logger.info('Find Similar Pokemon button clicked')
|
| 97 |
+
predicted_pokemon = None # Reset prediction
|
| 98 |
+
|
| 99 |
+
with st.spinner('Analyzing image...'):
|
| 100 |
+
try:
|
| 101 |
+
logger.info(f'Finding closest Pokemon match using {input_type} input...')
|
| 102 |
+
|
| 103 |
+
predicted_pokemon = similarity_engine.find_closest_pokemon(image_input)
|
| 104 |
+
|
| 105 |
+
except Exception as e:
|
| 106 |
+
logger.error(f'Error during Pokemon matching: {str(e)}')
|
| 107 |
+
st.error(f'❌ An error occurred: {str(e)}')
|
| 108 |
+
st.info('Please try uploading a different image, using a different URL, or try again later.')
|
| 109 |
+
|
| 110 |
+
if predicted_pokemon:
|
| 111 |
+
logger.info(f'Found closest Pokemon: {predicted_pokemon}')
|
| 112 |
+
st.success(f'🎯 The closest Pokemon is: **{predicted_pokemon.title()}**')
|
| 113 |
+
st.balloons()
|