import gradio as gr import pandas as pd # Define the leaderboard data data = { "Model": [ "DeepSeek-R1 (671B MoE)", "DeepSeek-V3 (671B MoE)", "Llama-3.1 (8B)", "Llama-3.1 (70B)", "Llama-3.1 (405B)", "Mistral (7B)", "Mixtral-8x22B (141B MoE)", "Qwen2.5 (7B)", "Qwen2.5 (72B)", "Claude 3.5 Haiku", "Claude 3.5 Sonnet", "Gemini 1.5 Flash", "Gemini 2.0 Flash", "Gemini 1.5 Pro", "Gemini 2.0 Pro", "GPT-4o", "LLaVa-v1.6-Mistral (7B)", "Gemini 1.5 Flash (MLLM)", "Gemini 2.0 Flash (MLLM)", "Gemini 1.5 Pro (MLLM)", "Gemini 2.0 Pro (MLLM)", "GPT-4o (MLLM)" ], "T (Full)": [63.89, 64.91, 57.80, 63.37, 62.83, 49.94, 57.60, 56.06, 65.65, 56.94, 65.32, 56.90, 58.36, 62.78, 60.75, 57.43, None, 64.91, 64.79, 66.22, 66.42, 64.95], "TA (Full)": [45.81, 47.10, 40.69, 45.51, 45.82, 34.78, 39.86, 41.01, 47.42, 40.66, 43.38, 38.20, 37.47, 43.25, 44.59, 37.64, None, 45.06, 40.07, 46.90, 46.17, 44.53], "TAC (Full)": [21.29, 23.65, 19.08, 19.29, 22.67, 14.13, 16.49, 19.54, 19.65, 19.75, 22.54, 18.97, 19.20, 21.26, 18.63, 15.35, None, 20.66, 19.74, 23.23, 18.25, 19.60], "T (Segmented)": [71.18, 77.56, 71.86, 76.51, 78.60, 63.73, 70.12, 65.57, 79.20, 68.18, 75.90, 72.09, 70.05, 76.56, 74.66, 76.76, 16.46, 86.23, 82.24, 86.01, 86.04, 83.47], "TA (Segmented)": [47.29, 51.35, 43.42, 50.64, 49.50, 39.23, 41.75, 38.16, 48.36, 43.61, 46.47, 44.83, 42.11, 46.38, 47.18, 45.90, 11.45, 54.21, 48.00, 53.51, 54.28, 51.15], "TAC (Segmented)": [21.36, 28.17, 21.81, 23.96, 25.38, 19.83, 19.56, 20.76, 22.77, 21.54, 24.60, 21.31, 21.43, 22.87, 24.20, 24.50, 3.30, 23.27, 23.52, 24.97, 25.21, 27.86] } # Create DataFrame df = pd.DataFrame(data) def display_leaderboard(): return df # Create a simple Gradio interface with gr.Blocks(title="VideoConviction LLM Leaderboard") as demo: gr.Markdown(""" # VideoConviction: A Multimodal Benchmark for Human Conviction and Stock Market Recommendations **Paper**: [VideoConviction: A Multimodal Benchmark for Human Conviction and Stock Market Recommendations](https://doi.org/10.1145/3711896.3737417) **Conference**: ACM SIGKDD 2025 **Authors**: Michael Galarnyk, Veer Kejriwal, Agam Shah, Yash Bhardwaj, Nicholas Watney Meyer, Anand Krishnan, Sudheer Chava ## Citation If you use this dataset, please cite our paper: ```bibtex @inproceedings{galarnyk2025videoconviction, author = {Michael Galarnyk and Veer Kejriwal and Agam Shah and Yash Bhardwaj and Nicholas Watney Meyer and Anand Krishnan and Sudheer Chava}, title = {VideoConviction: A Multimodal Benchmark for Human Conviction and Stock Market Recommendations}, booktitle = {Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 (KDD '25)}, year = {2025}, location = {Toronto, ON, Canada}, pages = {12}, publisher = {ACM}, doi = {10.1145/3711896.3737417} } ``` # VideoConviction Benchmark Leaderboard This leaderboard shows the F1 scores of various LLMs and MLLMs across the VideoConviction benchmark tasks. """) gr.Dataframe(display_leaderboard, interactive=False) demo.launch()