File size: 6,139 Bytes
16188ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from typing import List
from sentence_transformers import SentenceTransformer
from kmeans_pytorch import kmeans
import torch
from sklearn.cluster import KMeans
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,Text2TextGenerationPipeline
from inference_hf import InferenceHF
from .dimension_reduction import PCA
from unsupervised_learning.clustering import GaussianMixture
from models import KeyBartAdapter

class Template:
    def __init__(self):
        self.PLM = {
            'sentence-transformer-mini': '''sentence-transformers/all-MiniLM-L6-v2''',
            'sentence-t5-xxl': '''sentence-transformers/sentence-t5-xxl''',
            'all-mpnet-base-v2':'''sentence-transformers/all-mpnet-base-v2'''
        }
        self.dimension_reduction = {
            'pca': PCA,
            'vae': None,
            'cnn': None
        }

        self.clustering = {
            'kmeans-cosine': kmeans,
            'kmeans-euclidean': KMeans,
            'gmm': GaussianMixture
        }

        self.keywords_extraction = {
            'keyphrase-transformer': '''snrspeaks/KeyPhraseTransformer''',
            'KeyBartAdapter': '''Adapting/KeyBartAdapter''',
            'KeyBart': '''bloomberg/KeyBART'''
        }

template = Template()

def __create_model__(model_ckpt):
    '''

    :param model_ckpt: keys in Template class
    :return: model/function: callable
    '''
    if model_ckpt == '''sentence-transformer-mini''':
        return SentenceTransformer(template.PLM[model_ckpt])
    elif model_ckpt == '''sentence-t5-xxl''':
        return SentenceTransformer(template.PLM[model_ckpt])
    elif model_ckpt == '''all-mpnet-base-v2''':
        return SentenceTransformer(template.PLM[model_ckpt])
    elif model_ckpt == 'none':
        return None
    elif model_ckpt == 'kmeans-cosine':
        def ret(x,k):
            tmp = template.clustering[model_ckpt](
            X=torch.from_numpy(x), num_clusters=k, distance='cosine',
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        )
            return tmp[0].cpu().detach().numpy(), tmp[1].cpu().detach().numpy()
        return ret
    elif model_ckpt == 'pca':
        pca = template.dimension_reduction[model_ckpt](0.95)
        return pca

    elif model_ckpt =='kmeans-euclidean':
        def ret(x,k):
            tmp = KMeans(n_clusters=k,random_state=50).fit(x)
            return tmp.labels_, tmp.cluster_centers_
        return ret
    elif model_ckpt == 'gmm':
        def ret(x,k):
            model = GaussianMixture(k,50)
            model.fit(x)
            return model.getLabels(), model.getClusterCenters()
        return ret

    elif model_ckpt == 'keyphrase-transformer':
        model_ckpt = template.keywords_extraction[model_ckpt]

        def ret(texts: List[str]):
            # first try inference API
            response = InferenceHF.inference(
                inputs=texts,
                model_name=model_ckpt
            )

            # inference failed:
            if not isinstance(response, list):
                tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
                model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt)
                pipe = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer)

                tmp = pipe(texts)
                results = [
                    set(
                        map(str.strip,
                            x['generated_text'].split('|')  # [str...]
                            )
                    )
                    for x in tmp]  # [{str...}...]

                return results

            # inference sucsess
            else:
                results = [
                    set(
                        map(str.strip,
                            x['generated_text'].split('|')  # [str...]
                            )
                    )
                    for x in response]  # [{str...}...]

                return results

        return ret

    elif model_ckpt == 'KeyBart':
        model_ckpt = template.keywords_extraction[model_ckpt]
        def ret(texts: List[str]):
            # first try inference API
            response = InferenceHF.inference(
                inputs=texts,
                model_name=model_ckpt
            )

            # inference failed:
            if not isinstance(response,list):
                tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
                model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt)
                pipe = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer)


                tmp = pipe(texts)
                results = [
                    set(
                        map(str.strip,
                            x['generated_text'].split(';')  # [str...]
                            )
                    )
                    for x in tmp]  # [{str...}...]

                return results

            # inference sucsess
            else:
                results = [
                    set(
                        map(str.strip,
                            x['generated_text'].split(';')  # [str...]
                            )
                    )
                    for x in response]  # [{str...}...]

                return results

        return ret

    elif model_ckpt == 'KeyBartAdapter':
        def ret(texts: List[str]):
            model = KeyBartAdapter.from_pretrained('Adapting/KeyBartAdapter',revision='3aee5ecf1703b9955ab0cd1b23208cc54eb17fce', adapter_hid_dim=32)
            tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART")
            pipe = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer)

            tmp = pipe(texts)
            results = [
                set(
                    map(str.strip,
                        x['generated_text'].split(';')  # [str...]
                        )
                )
                for x in tmp]  # [{str...}...]

            return results
        return ret


    else:
        raise RuntimeError(f'The model {model_ckpt} is not supported. Please open an issue on the GitHub about the model.')