Spaces:
Sleeping
Sleeping
dev(narugo): add percentile value
Browse files
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
-
|
|
|
|
|
5 |
from imgutils.generic import classify_predict_score
|
6 |
from natsort import natsorted
|
7 |
|
@@ -17,14 +20,32 @@ _MODELS = natsorted([
|
|
17 |
LABELS = ["worst", "low", "normal", "good", "great", "best", "masterpiece"]
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def _fn_predict(image, model):
|
21 |
scores = classify_predict_score(
|
22 |
image=image,
|
23 |
repo_id=_REPOSITORY,
|
24 |
model_name=model,
|
25 |
)
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
|
29 |
|
30 |
if __name__ == '__main__':
|
@@ -36,13 +57,17 @@ if __name__ == '__main__':
|
|
36 |
gr_submit = gr.Button(value='Submit', variant='primary')
|
37 |
|
38 |
with gr.Column():
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
gr_submit.click(
|
43 |
_fn_predict,
|
44 |
inputs=[gr_input_image, gr_model],
|
45 |
-
outputs=[gr_score, gr_output],
|
46 |
)
|
47 |
|
48 |
demo.queue(os.cpu_count()).launch()
|
|
|
1 |
import os
|
2 |
+
from functools import lru_cache
|
3 |
|
4 |
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from huggingface_hub import HfFileSystem, hf_hub_download
|
8 |
from imgutils.generic import classify_predict_score
|
9 |
from natsort import natsorted
|
10 |
|
|
|
20 |
LABELS = ["worst", "low", "normal", "good", "great", "best", "masterpiece"]
|
21 |
|
22 |
|
23 |
+
@lru_cache()
|
24 |
+
def _get_mark_table(model):
|
25 |
+
df = pd.read_csv(hf_hub_download(
|
26 |
+
repo_id=_REPOSITORY,
|
27 |
+
repo_type='model',
|
28 |
+
filename=f'{model}/samples.csv',
|
29 |
+
))
|
30 |
+
df = df.sort_values(['score'])
|
31 |
+
df['cnt'] = list(range(len(df)))
|
32 |
+
df['final_score'] = df['cnt'] / len(df)
|
33 |
+
|
34 |
+
x = np.concatenate([[0.0], df['score'], [6.0]])
|
35 |
+
y = np.concatenate([[0.0], df['final_score'], [1.0]])
|
36 |
+
return x, y
|
37 |
+
|
38 |
+
|
39 |
def _fn_predict(image, model):
|
40 |
scores = classify_predict_score(
|
41 |
image=image,
|
42 |
repo_id=_REPOSITORY,
|
43 |
model_name=model,
|
44 |
)
|
45 |
+
weighted_mean = sum(i * scores[label] for i, label in enumerate(LABELS))
|
46 |
+
x, y = _get_mark_table(model)
|
47 |
+
percentile = y[np.searchsorted(x, np.clip(weighted_mean, a_min=0.0, a_max=6.0))]
|
48 |
+
return weighted_mean, percentile, scores
|
49 |
|
50 |
|
51 |
if __name__ == '__main__':
|
|
|
57 |
gr_submit = gr.Button(value='Submit', variant='primary')
|
58 |
|
59 |
with gr.Column():
|
60 |
+
with gr.Row():
|
61 |
+
gr_score = gr.Text(label='Aesthetic Score (0~6)', value='')
|
62 |
+
gr_percentile = gr.Text(label='Percentile (0.0-1.0)', value='')
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
gr_output = gr.Label(label='Aesthetic Classes')
|
66 |
|
67 |
gr_submit.click(
|
68 |
_fn_predict,
|
69 |
inputs=[gr_input_image, gr_model],
|
70 |
+
outputs=[gr_score, gr_percentile, gr_output],
|
71 |
)
|
72 |
|
73 |
demo.queue(os.cpu_count()).launch()
|