import torch import torch.nn.functional as F from transformers import AutoConfig, Wav2Vec2FeatureExtractor from src.models import Wav2Vec2ForSpeechClassification import gradio as gr import librosa device = torch.device("cpu") model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path) def load_data(path): speech, sampling_rate = librosa.load(path) if len(speech.shape) > 1: speech = speech[:,0] + speech[:,1] if sampling_rate != 16000: speech = librosa.resample(speech, sampling_rate,16000) return speech def inference(path): speech = load_data(path) inputs = feature_extractor(speech, return_tensors="pt").input_values with torch.no_grad(): logits = model(inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = {config.id2label[i]: float(round(score,2)) for i, score in enumerate(scores)} return outputs examples = ['data/test_audio.wav', 'data/test_audio_2.wav'] inputs = gr.inputs.Audio(label="Input Audio", type="filepath", source="microphone") outputs = gr.outputs.Label(type="confidences", label = "Output Scores") iface = gr.Interface(inference, inputs, outputs=["label"], examples=examples) iface.launch(debug=True)