File size: 6,004 Bytes
035761e
 
 
fceb8da
 
035761e
 
 
 
 
 
 
 
 
 
 
 
 
fceb8da
 
 
035761e
fceb8da
 
 
035761e
 
fceb8da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035761e
 
fceb8da
 
 
 
 
 
 
 
 
 
 
 
035761e
fceb8da
035761e
 
fceb8da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035761e
 
 
 
 
fceb8da
 
 
035761e
fceb8da
 
035761e
fceb8da
 
035761e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fceb8da
035761e
 
 
 
 
 
 
fceb8da
035761e
 
fceb8da
035761e
fceb8da
035761e
 
 
fceb8da
035761e
fceb8da
035761e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fceb8da
035761e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import gradio as gr
import torch
from model import SmolLMModule
from transformers import AutoTokenizer, AutoModelForCausalLM
import yaml
import glob

# Load config
with open("config_smollm2_135.yaml", "r") as file:
    config = yaml.safe_load(file)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
tokenizer.pad_token = tokenizer.eos_token


def get_available_checkpoints():
    """Get list of available checkpoints and final model"""
    models = []
    model_paths = {}

    # Get checkpoints
    checkpoints = glob.glob("checkpoints/*.ckpt")
    for ckpt in checkpoints:
        try:
            # Extract step number from the filename
            filename = os.path.basename(ckpt)
            # Handle the format 'model-step=step=X.ckpt'
            if "step=step=" in filename:
                step = int(filename.split("step=step=")[1].split(".")[0])
                display_name = f"Checkpoint Step {step}"
                models.append(display_name)
                model_paths[display_name] = ckpt
        except (ValueError, IndexError) as e:
            print(
                f"Warning: Could not parse checkpoint filename: {filename}, Error: {e}"
            )
            continue

    # Add final model if it exists
    final_model_path = "final_model"
    if os.path.exists(final_model_path):
        display_name = "Final Model"
        models.append(display_name)
        model_paths[display_name] = final_model_path

    # Sort checkpoints by step number (Final model will be at the end)
    def get_step_number(name):
        if name == "Final Model":
            return float("inf")
        try:
            return int(name.split("Step ")[-1])
        except:
            return 0

    models.sort(key=get_step_number)

    if not models:
        print(
            "Warning: No checkpoints or final model found in the following locations:"
        )
        print("- Checkpoints directory:", os.path.abspath("checkpoints"))
        print("- Final model directory:", os.path.abspath("final_model"))
    else:
        print(f"Found {len(models)} models:")
        for model in models:
            print(f"- {model}: {model_paths[model]}")

    return models, model_paths


def load_model_from_checkpoint(model_path):
    """Load model from checkpoint or final model directory"""
    if model_path == "final_model":
        # Load the final saved model
        model = SmolLMModule(config)
        model.model = AutoModelForCausalLM.from_pretrained(model_path)
    else:
        # Load from checkpoint
        model = SmolLMModule.load_from_checkpoint(model_path, config=config)

    model.eval()  # Set to evaluation mode
    return model


def generate_text(prompt, model_choice, max_length=100, temperature=0.7, top_p=0.9):
    """Generate text based on prompt using selected model"""
    # Check if model is selected
    if not model_choice:
        return "Please select a model checkpoint!"

    if not prompt:
        return "Please enter a prompt!"

    try:
        # Get model path from the mapping
        _, model_paths = get_available_checkpoints()
        model_path = model_paths.get(model_choice)

        if not model_path or not os.path.exists(model_path):
            return f"Model {model_choice} not found!"

        # Load model
        model = load_model_from_checkpoint(model_path)

        # Move model to GPU if available
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = model.to(device)

        # Tokenize input
        inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
        # Move inputs to same device as model
        inputs = {k: v.to(device) for k, v in inputs.items()}

        # Generate
        with torch.no_grad():
            outputs = model.model.generate(
                inputs["input_ids"],
                max_length=max_length,
                temperature=temperature,
                top_p=top_p,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
            )

        # Decode and return generated text
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return generated_text
    except Exception as e:
        return f"Error during generation: {str(e)}"


# Get available models
display_names, _ = get_available_checkpoints()

# Create Gradio interface
with gr.Blocks(title="SmolLM2 Inference") as demo:
    gr.Markdown("# SmolLM2 Text Generation")

    if not display_names:
        gr.Markdown("⚠️ No models found! Please train the model first.")
    else:
        gr.Markdown(
            f"Found {len(display_names)} models/checkpoints. Select one and enter a prompt to generate text."
        )
        gr.Markdown("Available models: " + ", ".join(display_names))

    with gr.Row():
        with gr.Column():
            model_dropdown = gr.Dropdown(
                choices=display_names,
                label="Select Model",
                value=display_names[-1] if display_names else None,
                interactive=True,
            )
            prompt = gr.Textbox(
                lines=3, placeholder="Enter your prompt here...", label="Input Prompt"
            )
            max_length = gr.Slider(
                minimum=10, maximum=500, value=100, step=10, label="Max Length"
            )
            temperature = gr.Slider(
                minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"
            )
            top_p = gr.Slider(
                minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p"
            )
            generate_btn = gr.Button("Generate")

        with gr.Column():
            output = gr.Textbox(lines=8, label="Generated Text")

    generate_btn.click(
        fn=generate_text,
        inputs=[prompt, model_dropdown, max_length, temperature, top_p],
        outputs=output,
    )

if __name__ == "__main__":
    demo.launch(share=True)